

Shining Hill Estates Phase 3 (Aurora) Town of Aurora

Functional Servicing and Stormwater Management Report

September 2022

Prepared by:

SCS Consulting Group Ltd 30 Centurian Drive, Suite 100 Markham, ON, L3R 8B8 Phone 905 475 1900 Fax 905 475 8335

Project Number: 2183

TABLE OF CONTENTS

Page

1.0 INTRODUCTION	4
1.1 Purpose of the Functional Servicing Report	4
1.2 Study Area	4
1.3 Background Servicing Information	4
2.0 STORMWATER MANAGEMENT	
2.1 Stormwater Runoff Control Criteria	6
2.2 Existing Drainage	6
2.2.1 Existing Site Characterization	7
2.2.2 Existing Hydrologic Modelling	7
2.3 Proposed Storm Drainage	8
2.4 Best Management Practices	9
2.5 Proposed Stormwater Management Plan	. 11
2.5.1 Quantity Control	
2.5.2 Quality Control	. 12
2.5.3 Erosion Control	. 12
2.5.4 Water Budget	. 12
2.6 Phosphorus Budget	. 12
2.7 Rear Yard Infiltration Trenches	. 14
2.8 Bioswale/Rain Garden: Roads	. 14
2.9 Bioswale Infiltration: Street D	. 14
2.10 Catchbasin Filtration Trench	. 14
2.11 SWM/LID Design Criteria Conformance	. 15
2.12 End-of-Pipe Underground Storage (Outlet 5)	
2.12.1 Extended Detention	
2.12.2 Quantity Control: Peak Flow	
2.13 Superpipe: Catchment 203 (Outlet 4)	
2.13.1 Extended Detention – Catchment 203	
2.13.2 Quantity Control: Peak Flow – Catchment 203	
2.14 Superpipe: Catchment 206 (Outlet 2)	
2.14.1 Extended Detention – Catchment 206	
2.14.2 Quantity Control: Peak Flow – Catchment 206	
2.15 Comparison of Existing Targets and Proposed Flows	
2.16 Storm Servicing	. 20
2.17 Overland Flow	
2.18 Regulatory Floodline	
3.0 SANITARY SERVICING	
3.1 Existing Sanitary Sewer System	
3.2 Proposed Sanitary Sewer System	
4.0 WATER SUPPLY AND DISTRIBUTION	
4.1 Existing Water Distribution	
4.2 Proposed Water System	
5.0 GRADING.	
5.1 Existing Grading Conditions	
5.2 Proposed Grading Concept	
6.0 RIGHT-OF-WAYS AND SIDEWALKS	
 7.0 EROSION AND SEDIMENT CONTROL DURING CONSTRUCTION 	
8.0 UTILITY CONSIDERATIONS	
9.0 SUMMARY	

LIST OF TABLES

- Table 2.1Stormwater Runoff Control Criteria
- Table 2.2Summary of Existing Flows
- Table 2.3Recommended Stormwater LID & BMP Practices
- Table 2.4Phosphorus Budget Summary
- Table 2.5MECP LID Criteria
- Table 2.6
 Outlet 5 Underground Storage System Storage Requirements
- Table 2.7
 Superpipe Storage Requirements Catchment 203 (Outlet 4)
- Table 2.8
 Superpipe Storage Requirements Catchment 206 (Outlet 2)
- Table 2.9Comparison of Existing Targets & Proposed Flows 4-Hour Chicago
- Table 2.10
 Comparison of Existing Targets & Proposed Flows 12-Hr SCS Type II
- Table 2.11
 Comparison of Existing Targets & Proposed Flows 24-Hr SCS Type II
- Table 2.12Rainfall Intensity Parameters

LIST OF FIGURES

- Figure 1.1 Site Location Plan
- Figure 2.1 Existing Storm Drainage Plan
- Figure 2.2 Proposed Storm Drainage Plan
- Figure 2.3 Proposed Servicing Plan
- Figure 2.4 Typical Single Lot Coverage
- Figure 2.5 Typical Townhouse Lot Coverage
- Figure 2.6 LID Plan
- Figure 2.7 Existing Phosphorus Budget
- Figure 2.8 Proposed Phosphorus Budget
- Figure 2.9 Rear Yard Infiltration Trench Detail
- Figure 3.1 External Sanitary Drainage Plan
- Figure 3.2 Preliminary Sanitary Drainage Plan
- Figure 5.1 Preliminary Grading Plan
- Figure 6.1 23.0 m Collector Road Section
- Figure 6.2 18.0 m Local Road Section
- Figure 6.3 15.0 m Local Road Section
- Figure 6.4 9.2 m Laneway Section
- Figure 6.5 Sidewalk and Parking Plan
- Figure 6.6 Catchbasin Filtration Trench Detail
- Figure 6.7 Bioswale/Infiltration Trench Detail

LIST OF APPENDICES

- Appendix A Draft Plan of Subdivision
- Appendix B Relevant Background Information
- Appendix C Hydrology Modelling
- Appendix D Phosphorus Budget
- Appendix E LID Preliminary Design
- Appendix F Detention Storage Preliminary Design
- Appendix G Sanitary Flow Calculations
- Appendix H Water Distribution Analysis Letter

SUBMISSION HISTORY

Submission	Date	In Support Of	Distributed To
1 st	March 2021	Re-Zoning, Official Plan Amendment, Draft Plan Approval	Town of Aurora, LSRCA, York Region, Shining Hill Estates Collection Inc.
2 nd	December 2022	Re-Zoning, Official Plan Amendment, Draft Plan Approval	Town of Aurora, LSRCA, York Region, Shining Hill Estates Collection Inc.
3 rd	September 2022	Re-Zoning, Official Plan Amendment, Draft Plan Approval	Town of Aurora, LSRCA, York Region, Shining Hill Estates Collection Inc.

1.0 INTRODUCTION

SCS Consulting Group Ltd. has been retained by Shining Hill Estates Collection Inc. to prepare a Functional Servicing and Stormwater Management Report for a proposed development in the Town of Aurora.

1.1 Purpose of the Functional Servicing Report

The Functional Servicing and Stormwater Management Report (FSSR) has been prepared in support of an Official Plan Amendment, Zoning Bylaw Amendment, and Plan of Subdivision applications for the proposed development. The Draft Plan of Subdivision is provided in **Appendix A**. The proposed development consists of the following land uses:

- ➡ low density residential,
- a neighbourhood park,
- ➡ open space,
- ← a private school (St. Anne's School (SAS)), and
- ➡ proposed roads.

The purpose of this report is to demonstrate that the development can be graded and serviced in accordance with the Town of Aurora, Lake Simcoe Region Conservation Authority (LSRCA), the Ontario Building Code, and the Ministry of Environment, Conservation and Parks (MECP) design criteria.

1.2 Study Area

The study area is a land assembly approximately 31.8 ha in size and is bound by St. John's Sideroad to the south, the Shining Hill Estates Phase 2 development to the southwest, a tributary of Tannery Creek to the east, existing residential development to the west, and the municipal boundary of Aurora-Newmarket to the north (see **Figure 1.1**).

The existing subject lands are comprised of estate residential uses including two dwellings, ancillary structures and open space areas.

1.3 Background Servicing Information

In preparation of the servicing and SWM strategies, the following design guidelines and standards were used:

- South Georgian Bay Lake Simcoe Source Protection Plan (SGBLS SPP) (Approval Date: January 26, 2015, Effective: July 1, 2015, Amended: May 14, 2015);
- Town of Aurora Design Criteria Manual for Engineering Plans (Revised June 2021);
- Technical Guidelines for Stormwater Management Submissions, Lake Simcoe Region Conservation Authority (September, 2016);
- Phosphorus Offsetting Policy, Lake Simcoe Region Conservation Authority (July 2021);

- ➡ Phosphorus Budget Tool in Support of Sustainable Development for the Lake Simcoe Watershed (March, 2012);
- ➡ Water Budget Offsetting Policy, Lake Simcoe Region Conservation Authority (July 2021);
- ► Lake Simcoe Protection Plan (July 2009); and
- Ministry of Environment, Conservation and Parks (MECP) Stormwater Management Planning and Design Manual (March 2003).

The site servicing and SWM strategies are also based on the following approved Engineering Drawings as well as the following reports for this Draft Plan of Subdivision:

- ➡ St. Andrews on The Hill Engineering Drawings, Revision date March 1988, prepared by PMG Consulting Engineers;
- Hydrogeological Investigation Revised, Shining Hill (Phase 3), 162, 306, 370, 434 & 488 St. John's Sideroad West, Aurora, Ontario, prepared by Golder Associates, dated December 20 2021;
- ➡ A Geotechnical Investigation and Slope Stability Assessment for Proposed Residential Development, Soil Engineers Ltd., November 19 2021; and
- ➡ A Geotechnical Investigation and for Proposed School Block, Soil Engineers Ltd., November 19 2021.

Excerpts from the above listed documents are included in Appendix B.

A Rainscaping design charette with the Town of Aurora and LSRCA was held on December 15, 2020. The meeting minutes are included in **Appendix B**.

2.0 STORMWATER MANAGEMENT

2.1 Stormwater Runoff Control Criteria

The following stormwater runoff control criteria have been established based on the greatest requirements of each of the design guidelines and standards listed in **Section 1.3**. The stormwater runoff criteria are summarized below in **Table 2.1**:

Criteria	Control Measure
Quantity Control	Peak Flow: Control proposed peak flows to existing peak flows for the 2 through 100 year storm events. (Town, LSRCA)
	Volume Control: Proposed runoff volume from a 25 mm rainfall event over the total impervious area shall be captured and retained/treated on- site or in accordance with LRCA's Flexible Treatment guidelines if full compliance with the 25 mm guideline is not possible. (LSRCA)
Quality Control	Total Suspended Solids: MECP Enhanced Level Protection (80% TSS Removal). (MECP, LSRCA, Town)
	Phosphorus: Per Lake Simcoe Protection Plan, a Phosphorus Loading Study is to be done to determine the existing and proposed phosphorus loading rates. Per the LSPOP, target 100% control and net-zero phosphorus export. (LSRCA)
Erosion Control	Detention of the 25 mm rainfall runoff for a minimum of 24 hours. (LSRCA)
Water Budget	As the site is within a Wellhead Protection Area (WHPA) Q1/Q2, maintain the existing water budget through the use of best management practices such as Low Impact Development measures. (SGBLS SPP)

Table 2.1 – Stormwater Runoff Control Criteria

2.2 Existing Drainage

The subject lands are located within the Tannery Creek Watershed in the Town of Aurora. A tributary of the Tannery Creek travels west to east along the southern limits of the property, crosses south under St. John's Sideroad, and eventually crossing back north under St. John's Sideroad where it travels south to north east of the subject lands, and ultimately east toward Yonge Street away from the subject property.

As shown on Figure 2.1, there are five outlets for the site that all drain to the Tannery Creek:

- 1. Southwest outlet via sheet flow to the tributary from the SAS site (Catchment 105 -2.68 ha),
- 2. Southwest outlet via the tributary (Catchment 101 4.07 ha),

- 3. North outlet via sheet flow from the SAS site toward a drainage draw located to the north in Newmarket (Catchment 104 1.06 ha), and
- 4. North outlet toward a wetland located to the north in Newmarket (Catchment 102 -3.63 ha), and
- 5. East outlet via sheet flow down the valley wall (Catchment 103 2.38 ha).

Drainage from the Outlets 1 and 3 are wholly from the SAS site, which the development of that block will be subject to Site Plan Control. For the purpose of this FSSR, the hydrology of those catchments will not be assessed as it will be completed through a future the Site Plan Control application.

2.2.1 Existing Site Characterization

The soil classifications were identified using the Ontario Soil Survey Complex from OMAFRA and land uses visible in recent aerial photography and verified through a site visit. The mapping identifies that the soils within the study limits are Schomberg Clay Loam. According to the Design Flood Estimation Design Chart H2-6A, the soils are considered as Hydrologic Soil Group C. This is consistent with Golder Associations Hydrogeological Investigation that notes the predominant soil type is Silt Loam, which is a Hydrologic Soil Group C according to the MTO Drainage Management Manual (1997) Design Chart 1.08.

Golder Associates completed in-situ infiltration testing which found a range of estimated infiltration rates of 30 - 75 mm/hr. Applying a safety correction factor yields a design infiltration rates ranging from 12 - 30 mm/hr. Golder Associates completed monitoring of groundwater level across the site with readings from September 2020 to November 2021. Refer to **Appendix B** for excerpts from the Hydrogeological Assessment for the infiltration test results and groundwater monitoring results.

2.2.2 Existing Hydrologic Modelling

Hydrologic modelling was undertaken using the Visual Otthymo Version 6.0 software (VO6) based on the 4-hour Chicago, 12-hour SCS Type II, and 24-hour SCS Type II Distribution methods. The IDF rainfall information was obtained from the Town of Aurora Design Criteria Manual to determine the existing peak flows to outlet locations. The existing flows from the study area to the outlet locations are summarized in **Table 2.2**.

Return Period	Outlet	Outlet 2 (Catchment 101) (m ³ /s)			Outlet 5 (Catchment 102) (m ³ /s)			t 4 (Catchmo (m ³ /s)	ent 103)
Storm	4-Hour Chi	12-Hour SCS	24-Hour SCS	4-Hour Chi	12-Hour SCS	24-Hour SCS	4-Hour Chi	12-Hour SCS	24-Hour SCS
2 Year	0.051	0.081	0.092	0.109	0.177	0.196	0.090	0.138	0.151
5 Year	0.098	0.138	0.151	0.208	0.289	0.307	0.170	0.221	0.234
10 Year	0.134	0.188	0.205	0.286	0.384	0.408	0.234	0.292	0.309
25 Year	0.175	0.243	0.266	0.375	0.488	0.518	0.307	0.368	0.390
50 Year	0.228	0.286	0.302	0.483	0.567	0.582	0.392	0.426	0.437
100 Year	0.280	0.331	0.347	0.580	0.647	0.661	0.467	0.486	0.494

Table 2.2: Summary of Existing Flows

A summary of modelling parameters and an existing VO6 schematic are provided in **Appendix C**. A USB drive containing the VO6 hydrology model is also provided in **Appendix C**, or available on request via file transfer.

2.3 **Proposed Storm Drainage**

The proposed storm drainage plan is shown on **Figure 2.2**, while the proposed servicing plan is shown on **Figure 2.3**. Impervious coverage was estimated based on the maximum impervious areas using the anticipated zoning, and is illustrated on **Figure 2.4**.

Lot Level Drainage

Split draining lots will use a rear yard infiltration trench to infiltrate runoff from the back half of the roofs where 1 m of separation to the high groundwater level can be provided. Infiltration measure are required by the Ontario Building Code to be a minimum of 5 m from a foundation. The front yard setbacks are 4.5 m per the zoning bylaw which eliminates the possibility for infiltration measures in the front yard for runoff from the front half of the roofs and driveways. Therefore, infiltration measures for the front half of the roofs and driveways can only be located in the road right-of-way or end-of-pipe.

All roof downspouts are to drain to grassed areas.

Outlets 1 and 3 - SAS Site

Runoff to Outlet's 1 and 3 will not be modified as part of the subdivision development. Future development of the site will be subject to Site Plan Control, and the proposed development will have to demonstrate compliance with all of the stormwater runoff control criteria.

Outlet 2

Clean runoff from 0.29 ha of rear & front yards (Catchment 207), and major system runoff from 0.55 ha (Catchment 204) will drain via overland flow directly to Outlet 2. Runoff from approximately 2.17 ha (Catchment 206) will be captured by the storm sewer system, controlled to the stormwater runoff control criteria using low impact development (LID) measures within the municipal road right-of-way and superpipes and conveyed to Outlet 2 via a storm sewer.

Runoff from the front of lots 79-83 will be captured by rear yard catchbasins to prevent runoff from draining onto St. John's Sideroad.

Outlet 4

Clean runoff from 0.07 ha of rear & front yards (Catchment 205) will drain via overland flow directly to Outlet 4. Major and minor system runoff from 2.95 ha (Catchment 203), and major system runoff from 0.26 ha (Catchment 202) will be captured by the storm sewer system, controlled to the stormwater runoff control criteria using LIDs within the municipal road right-of-way and an superpipes and conveyed to Outlet 4 via a storm sewer draining east, located within a municipal easement, north of the St. John's Sideroad right-of-way, discharging at the bottom of the valley wall to the Tannery Creek tributary.

Runoff from the front of lots 83-87 will be captured by rear yard catchbasins to prevent runoff from draining onto St. John's Sideroad.

Outlet 5

Major and minor system runoff from 3.60 ha (Catchments EXT1, 201 and 208), and minor system runoff from 0.26 ha (Catchment 202) will be captured by the storm sewer system, controlled to the stormwater runoff control criteria using LIDs and an end of pipe underground stormwater management facility located in Block 97 and conveyed to Outlet 5 via a storm sewer discharging to the Tannery Creek. The runoff from the SAS site that drains to Outlet 5 (Catchment EXT1) will be accommodated for in the end-of-pipe SWM facility for peak flow control, but will be required to provide on-site volume control, quality control (TSS, phosphorus), erosion control, and water balance. Runoff from 0.26 ha (Catchment 209) will drain via overland flow to Outlet 5.

2.4 Best Management Practices

In accordance with the Ministry of Environment Stormwater Management Planning and Design Manual (2003) and LSRCA objectives, a review of stormwater management LID measures and best management practices (BMP) was completed. The review included a focus on the treatment train approach, evaluating lot level, conveyance system and end-of-pipe practices.

As part of the review of the LIDs, a "RainScaping" design charrette meeting was held on December 15, 2020. The RainScaping charrette was a meeting with the Town of Aurora, Town of Newmarket, and LSRCA staff, as well as the applicant and the applicant's consultants to discuss, review and develop LID strategies, opportunities and constraints for the subject development.

The meeting minutes from the RainScaping charrette are included in **Appendix B**. **Table 2.3** notes the various LIDs and whether they are recommended.

STORMWATER MANAGEMENT PRACTICE	RECOMMENDED (Yes/No)
Reduced Lot Grading	Yes
Increased Topsoil Depth	Yes
Passive Landscaping/Bio-Retention	No
Roof Leader to Rear Yard Infiltration Trenches	Yes
Roof Runoff to Retention Cisterns	No
Green Roofs	No
Rooftop and/or Parking Lot Detention Storage	No
Roof overflow to Grassed Areas	Yes
Pervious Pavement	No
Vegetated Filter Strips	No
Bioswale/Rain Garden	Yes
Exfiltration at Rear Lot Catchbasins	No
Street Catchbasin Infiltration/Filtration System	Yes
Underground Stormwater Detention Facility	Yes
Wet Ponds, Wetlands, Dry Ponds	No

Table 2.3 – Recommended Stormwater LID & BMP Practices

Reduced Lot Grading – Reducing lot grades from a maximum of 5% to a minimum of 2% is suggested wherever possible to maximize infiltration and evapotranspiration of stormwater runoff at the lot level.

Increased Topsoil Depth – A minimum topsoil restoration depth of 0.3 meters is proposed in all landscaped areas.

Roof overflow to Grassed Areas –Roof leaders can be directed to grassed areas where there is grass.

Bioswale/Rain Garden – A grassed swale in the boulevard to receive street runoff is proposed running parallel to single loaded roads/laneways and roads without driveway access.

Roof Runoff to Rear Yard Infiltration Trenches – Directing roof runoff to subsurface infiltration trenches can be used to promote infiltration. By promoting infiltration water quality and quantity control is provided for the volume of water retained. Infiltration of roof runoff can provide a significant SWM benefits as part of the overall treatment train approach for the proposed development. All split draining lots will use a rear yard infiltration trenches to infiltrate runoff from the back half of the roofs. Infiltration measure are required by the Ontario

Building Code to be a minimum of 5 m from a foundation. The front yard setbacks are 4.5 m per the zoning bylaw which eliminates the possibility for infiltration measures in the front yard for runoff from the front half of the roofs and driveways.

Street Catchbasin Infiltration/Filtration System – Proposed to treat runoff from the street, there will be a connection from the street catchbasins to an infiltration or filtration trench (groundwater dependent) located in the road boulevard. Where feasible, the infiltration/filtration trenches will be sized for the volume control or water quality control criteria, whichever is a greater volume. Preliminary sizing is discussed further in **Section 2.6**.

Wet Ponds, Wetlands, Dry Ponds, Underground Storage – As discussed during the RainsScaping design charette, wet ponds are discouraged by the LSRCA. Underground storage systems are preferred to be located under park areas to utilize dual land uses. Underground storage will be utilized under the neighbourhood park at achieve the peak flow and erosion control criteria.

Superpipes – To meet quantity and erosion control targets, stormwater storage will be provided by the use of superpipes prior to discharging to the drainage outlets.

Manufactured Treatment Device - A properly sized manufactured treatment device (MTD) can assist in providing MECP Enhanced (Level 1) treatment and can contribute to the treatment train approach for water quality control. MTD's can be used as standalone devices or as pre-treatment to infiltration or filtration systems and could include catchbasin inserts (such as goss traps), oil-grit separators, or stormwater filters.

The location of the proposed LID measures is shown on **Figure 2.6**. The infiltration LID locations have been selected for locations where a minimum of 1 m separation between the proposed ground and the seasonally high groundwater table can be provided. Golder Associate's Hydrogeological Investigation assessed Site Sections 'A-A', 'B-B' and 'C-C' which illustrate the proposed ground and seasonally high groundwater table (refer to excepts in **Appendix B3**).

2.5 Proposed Stormwater Management Plan

2.5.1 Quantity Control

Peak Flow

The proposed superpipe and underground storage system will control proposed flows from the site to existing flow rates for the 2 to 100 year storm events. The preliminary design of these facilities and a comparison of the proposed and existing peak flow rates are discussed further in following sections.

<u>Volume</u>

The proposed development targets a volume control criteria to capture and treat or retain the runoff volume from the 25 mm rainfall event from new and/or fully reconstructed impervious areas. Proposed LIDs and BMPs have been sized to provide this storage volume where feasible. The preliminary design of these facilities are discussed further in following sections.

2.5.2 Quality Control

Quality control to provide TSS and phosphorus removal will be provided by a treatment train of LID techniques which will include additional topsoil depth on all grassed areas, reduced lot grading where possible, rear yard infiltration trenches, bioswales, a street catchbasin infiltration or filtration system, and an end-of-pipe underground storage system. The preliminary design requirements of the SWM infrastructure to provide the water quality treatment and a detailed phosphorus budget are provided in following sections.

2.5.3 Erosion Control

The erosion control criteria is to provide a minimum of 24 hour extended detention of the runoff from a 25 mm rainfall event and will be provided in the superpipe for Outlet 2 and Outlet 4, and in the end-of-pipe underground storage system for Outlet 5. The preliminary design requirements of the facilities are discussed further in a following section.

2.5.4 Water Budget

Where feasible, measures to minimize impacts on the water budget will be incorporated into the development design. As noted in the Hydrogeological Investigation, the estimated existing infiltration volume on the proposed development is approximately 16,740 m³. Without mitigation the proposed development infiltration volume is approximately 9,895 m³.

Low impact development measures will be implemented as previously described to maintain or increase existing infiltration rates. Per the Hydrogeological Investigation, it is anticipated that a proposed infiltration volume of approximately 17,480 m³ can be achieved through the proposed mitigation measures.

The Hydrogeological Investigation also assessed catchment based water budgets to the receiving tributaries and wetlands. Refer to the Hydrogeological Investigation submitted under separate cover for the results.

2.6 Phosphorus Budget

Under the Lake Simcoe Protection Plan, a stormwater management plan must demonstrate how phosphorus loadings are minimized between existing and proposed. Furthermore, LSRCA's Lake Simcoe Phosphorus Offsetting Policy (September 2017) states that:

"The phosphorous load from the proposed development on the property will be zero. In situations where the phosphorous load cannot be met or demonstrated in a postdevelopment scenario to achieve the Zero Phosphorous, the developer or proponent shall be required to provide phosphorous off setting to the LSRCA."

The MECP database application *Lake Simcoe Phosphorus Loading Development Tool* (v2, 01-April-2012 update) was used to complete the phosphorus budget for the proposed development. Due to the complex treatment train provided by the SWM measures outlined above a spreadsheet based on the MECP database application was developed to determine the proposed conditions phosphorus budget.

Existing Phosphorus Loadings

The existing phosphorus loading is based on the land uses based on the Ecological Land Classification (ELC) community type for existing conditions shown in the Natural Heritage Evaluation, prepared by Beacon Environmental, submitted under separate cover. The existing land uses are shown on **Figure 2.7**. Based on the Phosphorus Loading Development Tool, the existing annual phosphorus loadings were calculated to be 1.71 kg/year. Refer to **Appendix D** for the phosphorus loading tool output.

Proposed Phosphorus Loadings

The proposed land uses for the proposed development are shown on **Figure 2.8**. The proposed residential development is considered high intensity development according to the MECP Phosphorus Tool. The SAS Blocks will be subject to Site Plan control, and therefore will be required to complete their own Phosphorus Budget analysis at the Site Plan control stage. The runoff from these blocks that drains to the proposed end-of-pipe subdivision infrastructure will be partially treated for phosphorus removal at those end-of-pipe facilities. The phosphorus from the site plan block (SAS) that is not removed by the end-of-pipe facility will need to be removed to achieve the zero phosphorus target for those blocks, either through additional onsite controls or offsetting, demonstrated at the Site Plan control stage.

The majority of the development will be treated by sorbtive media interceptors, which will be created by adding 5% iron filings by weight to the proposed filtration and infiltration facilities. This is considered to be a standard sizing guideline for sorbtive media interceptors. Please refer to **Appendix D** for relevant sizing information.

The proposed phosphorus loading with no best management practices (BMPs) was calculated to be 20.37 kg/yr (refer to **Appendix D**).

The proposed phosphorus loading with BMPs was calculated to be 2.92 kg/yr (see **Appendix D**). **Table 2.4** provides a summary of the land use, BMP, and phosphorus removal efficiencies for the proposed condition.

Phosphorus Loading (kg/yr)					
Existing	Proposed without BMPs	Proposed with BMPs			
1.71	20.37	2.92			

Table 2.4: Phosphorus Budget Summary

As per LSRCA's Phosphorus Offsetting Policy, the increase in phosphorus loading will be offset at a rate of \$35,770/kg/year, at a 2.5:1 ratio. The cost of the phosphorous offsetting will total \$300,058.89, which includes a 15% administration cost. As previously noted, this calculation was completed assuming that the SAS Blocks will remove 100% phosphorus and therefore may be subject to additional phosphorus offsetting to be calculated at the Site Plan Control stage.

2.7 Rear Yard Infiltration Trenches

Rear yard infiltration trenches are proposed for split draining lots to receive runoff from the back half of the roofs where 1 m of separation to the high groundwater level can be provided. The trenches will be located beneath the rear yard swales and will receive runoff from the back half of the roofs by overland runoff from roof leaders directed to the rear yard swales. They will be composed of washed clear stone and concrete sand with approximate dimensions of 0.5 m deep and 0.10 m deep, respectively and a 1.0 m width, which will capture a minimum of 25 mm of runoff from the back half of the roofs. The length of the trench will vary depending on the size of the lots. Based on the design infiltration rate of 12 mm/hr, the runoff storage volume in the trench can be infiltrated with 48 hours. Refer to **Figure 2.9** for details, and **Figure 2.6** for proposed locations. Calculations are provided in **Appendix E**. Please refer to the Hydrogeology Report, which outlines the allowable locations for the rear yard infiltration trenches (**Appendix B3**).

2.8 Bioswale/Rain Garden: Roads

The proposed bioswale/rain garden will collect runoff from half of the road right-of-way via proposed curb cuts to facilitate retention and filtration via the proposed engineered soil media and stone base. The curb cuts are proposed along the length of the respective bioswale to maximize conveyed drainage area. Curb cuts are proposed upstream of catchbasins to ensure runoff is conveyed to the bioswale prior to discharging to the proposed storm sewers. In storm events where the capacity of the bioswale is exceeded, runoff will discharge back to the road where it will be captured by catchbasins located immediately downstream of the lowest curb cut. Because there will not be 1.0 m of separation from the bottom of the bioswales to the seasonally high groundwater, the bioswales will be wrapped in an impermeable liner and have an underdrain.

The bioswales are sized for the greater of the water quality treatment volume per Table 3.2 of the MECP SWM Planning and Design Manual or the 25 mm volume from impervious surfaces. The bioswale on the 16.5 m road right-of-way provides storage for 25 mm/impervious area, and the bioswale on the 15 m road right-of-way provides storage for 21.1 mm/impervious area. Right-of-way cross sections and the details are discussed further in **Section 6.0** and calculations are provided in **Appendix E**.

2.9 Bioswale Infiltration: Street D

The proposed bioswale infiltration system will collect runoff from the front half of the roofs, driveways, and Street D via overland flow to the LID located in an island of the cul-de-sac to facilitate infiltration via the proposed engineered soil media and stone base. The bioswale infiltration system is sized for the greater of the water quality treatment volume per Table 3.2 of the MECP SWM Planning and Design Manual or the 25 mm volume from impervious surfaces. The bioswale provides storage for 5.0 mm/impervious area. Details are discussed further in **Section 6.0** and calculations are provided on **Figure 6.7**.

2.10 Catchbasin Filtration Trench

Catchbasin filtration trenches are proposed to provide quality control for the municipal road right-of-way and lots draining to the catchbasins. Runoff entering a catchbasin will be directed

through a catchbasin pretreatment device (e.g. "goss trap" and sump) before entering a lead directed to the trenches. Runoff in excess of the capacity of the lead, or if a filtration trench has reached capacity, will be directed through an overflow lead into the minor system. The trenches will be located beneath the right-of-way boulevard. However, they can only fit in one side of the right-of-way due to conflicts with the watermain separation. Therefore, any catchbasin which isn't directly connected to a trench will have its lead connected to a catchbasin that is directly connected to a trench. The proposed road right-of-way cross section with the catchbasin filtration system is discussed further in **Section 6.0**.

As there will not be a minimum of 1.0 m of separation to the seasonally high groundwater level, the system will be designed as a filter trench with an impermeable liner to prevent groundwater inflow and a subdrain returning water back to the storm sewer.

The catchbasin filtration trenches will be composed of washed clear stone on top of 0.4 m of sand. A perforated drain within the sand layer connected to the minor system will be provided at the downstream end of the filtration facility. The proposed road right-of-way cross section with the catchbasin filtration system is discussed further in **Section 6.0**.

The filtration trenches are sized for a minimum of the water quality treatment volume per Table 3.2 of the MECP SWM Planning and Design Manual. Due to potential conflicts with the service laterals, other utilities in the boulevard, and potential future maintenance, it is not feasible to achieve the 25 mm volume from impervious surfaces. The trenches all provide a minimum of the water quality treatment volume. The trenches provide the following volume from the contributing impervious areas:

- •> 18 m road right-of-way: 10.1 mm/impervious area,
- 23 m road right-of-way: 8.4 mm/impervious area,
- Half of 16.5 m road right-of-way: 39.6 mm/impervious area, and
- Half of 15 m road right-of-way: 20.1 mm/impervious area.

Calculations are provided in **Appendix E**.

2.11 SWM/LID Design Criteria Conformance

The SWM/ LID's throughout the site have been designed in order to meet MECP's criteria for infiltration trenches. **Table 2.5** below describes the MECP criteria and how the LID design meets it.

Design Element	Criteria	Design Conformance
Drainage Area	< 2 hectares	Achieved, refer to Figure
		2.6.
Land Use	Residential land only	Achieved.
Depth	The seasonally high groundwater	Achieved where possible.
	table depth should be > 1 m below	Not achieved – the system
	the bottom of the infiltration trench	will be designed as a filter
		trench with impermeable
		liner.

Table 2.5: MECP LID Criteria

Design Element	Criteria	Design Conformance
Drawdown	24 -48 hr drawdown	Achieved, refer to
		Appendix E.
Storage Media	50 mm diameter clear stone	Due to constructability, 19
		mm diameter clear stone is
		typical. This provides the
		same porosity, therefore
		achieving the criteria.
		Refer to Figures 6.7.
Filter Layer	150 - 300 mm sand filter	Achieved, refer to Figures
		6.7.
Distribution Pipes	≥100 mm diameter pipe	Achieved, refer to Figures
	75 - 150 mm from the top of the	6. 7.
	storage layer	

2.12 End-of-Pipe Underground Storage (Outlet 5)

Catchments 201, 202 and EXT1 will be controlled for erosion and quantity control using an underground storage system, such as "Greenstorm".

2.12.1 Extended Detention

The attenuation of the extended detention volume in the underground storage system will provide erosion protection for the downstream watercourse. The extended detention volume will be sized based on the detention of the 25 mm - 4 hour Chicago rainfall event. The volume calculated for the extended detention will be attenuated for a minimum of 24 hours.

The required extended detention volume for Catchment 201, 202, 208 and EXT1 (Outlet 5) is 659 m³ (see **Appendix F**). The peak release rate for the extended detention volume is approximately $0.011 \text{ m}^3/\text{s}$.

2.12.2 Quantity Control: Peak Flow

The proposed underground storage will control proposed 2 - 100 year flows from the site to the existing peak flow rates. Proposed hydrology modelling was completed using the VO6 model to determine the required detention storage volume. Refer to the USB drive containing the VO6 hydrology model provided in **Appendix C**. A summary of the resulting storage requirements for the underground storage system is provided in **Table 2.5**.

Return	4 Hour Chicago		4 Hour Chicago 12 Hour SCS Type II		24 Hour SCS Type II	
Period Storm	Discharge (m ³ /s)	Storage (m ³)	Discharge (m ³ /s)	Storage (m ³)	Discharge (m ³ /s)	Storage (m ³)
2 Year	0.035	744	0.077	801	0.095	825
5 Year	0.118	856	0.167	983	0.175	1028
10 Year	0.161	957	0.201	1157	0.222	1220
25 Year	0.188	1091	0.283	1322	0.306	1391

Table 2.6: Outlet 5 Underground Storage System Storage Requirements

Return	4 Hour Chicago 12 Hour SCS Type II		4 Hour Chicago		CS Type II	24 Hour S	CS Type II
Period Storm	Discharge (m ³ /s)	Storage (m ³)	Discharge (m ³ /s)	Storage (m ³)	Discharge (m ³ /s)	Storage (m ³)	
50 Year	0.243	1255	0.314	1443	0.322	1494	
100 Year	0.305	1384	0.353	1568	0.374	1610	

Note: Bold values indicate the more conservative (higher) proposed storage volumes

2.13 Superpipe: Catchment 203 and Catchment 204 (Outlet 4)

Catchment 203 and the minor system from Catchment 204 will be controlled for erosion and quantity control by superpipe storage.

2.13.1 Extended Detention – Catchment 203 and Catchment 204 (Minor System)

The attenuation of the extended detention volume in the underground storage system will provide erosion protection for the downstream watercourse. The extended detention volume will be sized based on the detention of the 25 mm – 4 hour Chicago rainfall event. The volume calculated for the extended detention will be attenuated for a minimum of 24 hours. The required extended detention volume is 413 m³ (see **Appendix F**). The peak release rate for the extended detention volume is approximately 0.007 m³/s.

2.13.2 Quantity Control: Peak Flow – Catchment 203 and Catchment 204 (Minor System)

The proposed superpipe will control proposed 2 - 100 year flows from the site to the existing peak flow rates. Proposed hydrology modelling was completed using the VO6 model to determine the required detention storage volume. Refer to the USB drive containing the VO6 hydrology model provided in **Appendix C**. A summary of the resulting storage requirements for the superpipe is provided in **Table 2.6**.

Return	n 4 Hour Chicago		rn 4 Hour Chicago 12 Hour SCS Type II		24 Hour SCS Type II	
Period	Discharge	Storage	Discharge	Storage	Discharge	Storage
Storm	(m^3/s)	(m^3)	(m^3/s)	$(m^3)^{-1}$	(m^3/s)	(m^3)
2 Year	0.073	380	0.107	428	0.114	462
5 Year	0.118	483	0.155	592	0.169	626
10 Year	0.150	580	0.195	721	0.208	765
25 Year	0.184	678	0.232	838	0.241	883
50 Year	0.221	803	0.252	937	0.256	959
100 Year	0.250	928	0.273	1039	0.275	1050

Table 2.7: Superpipe Storage Requirements – Catchment 203 and Catchment 204(Minor System) (Outlet 4)

Note: Bold values indicate the more conservative (higher) proposed storage volumes

2.14 Superpipe: Catchment 206 (Outlet 2)

Catchment 206 will be controlled for erosion and quantity control by superpipe storage.

2.14.1 Extended Detention – Catchment 206

The attenuation of the extended detention volume in the underground storage system will provide erosion protection for the downstream watercourse. The extended detention volume will be sized based on the detention of the 25 mm - 4 hour Chicago rainfall event. The volume calculated for the extended detention will be attenuated for a minimum of 24 hours. The required extended detention volume is 247 m³ (see **Appendix F**). The peak release rate for the extended detention volume is approximately $0.004 \text{ m}^3/\text{s}$.

2.14.2 Quantity Control: Peak Flow – Catchment 206

The proposed superpipe will control proposed 2 - 100 year flows from the site to the existing peak flow rates. Proposed hydrology modelling was completed using the VO6 model to determine the required detention storage volume. Refer to the USB drive containing the VO6 hydrology model provided in **Appendix C**. A summary of the resulting storage requirements for the superpipe is provided in **Table 2.8**.

Return	4 Hour Chicago		п		24 Hour S	CS Type II
Period Storm	Discharge (m ³ /s)	Storage (m ³)	Discharge (m ³ /s)	Storage (m ³)	Discharge (m ³ /s)	Storage (m ³)
2 Year	0.016	293	0.036	325	0.045	339
5 Year	0.052	351	0.069	415	0.074	443
10 Year	0.068	407	0.086	511	0.094	550
25 Year	0.080	479	0.106	615	0.115	664
50 Year	0.098	573	0.117	680	0.138	707
100 Year	0.114	662	0.172	732	0.201	748

Table 2.8:	Superpipe Sto	rage Requirem	ents - Catchment 206

Note: Bold values indicate the more conservative (higher) proposed storage volumes

2.15 Comparison of Existing Targets and Proposed Flows

To the extent possible, the proposed development was designed to control proposed runoff to the existing levels. **Table 2.9**, **Table 2.10** and **Table 2.11** provides a comparison of existing and proposed flows at outlet locations 2, 4 and 5.

Table 2.9: Comparison of Existing Targets & Proposed Flows – 4-Hour Chicago

Return Period	Outlet 2 (m ³ /s)		Outlet 4 (m ³ /s)		Outlet 5 (m ³ /s)	
Storm	Ex.	Prop.	Ex.	Prop.	Ex.	Prop.
2 Year	0.051	0.018	0.090	0.074	0.109	0.037
5 Year	0.098	0.059	0.170	0.120	0.208	0.128
10 Year	0.134	0.080	0.234	0.153	0.286	0.179
25 Year	0.175	0.095	0.307	0.188	0.375	0.210
50 Year	0.228	0.144	0.392	0.225	0.483	0.266
100 Year	0.280	0.188	0.467	0.254	0.580	0.340

Table 2.10: Comparison of Existing Targets & Proposed Flows – 12-Hour SCS Type II

Return Period	Outlet 2 (m ³ /s)		Outlet 4 (m ³ /s)		Outlet 5 (m ³ /s)	
Storm	Ex.	Prop.	Ex.	Prop.	Ex.	Prop.
2 Year	0.081	0.041	0.138	0.109	0.177	0.083
5 Year	0.138	0.085	0.221	0.158	0.289	0.189
10 Year	0.188	0.116	0.292	0.199	0.384	0.230
25 Year	0.243	0.157	0.368	0.235	0.488	0.315
50 Year	0.286	0.183	0.426	0.256	0.567	0.360
100 Year	0.331	0.216	0.486	0.277	0.647	0.398

Return Period	Outlet 2 (m3/s)		Outlet 4 (m3/s)		Outlet 5 (m3/s)	
Storm	Ex.	Prop.	Ex.	Prop.	Ex.	Prop.
2 Year	0.092	0.051	0.151	0.116	0.196	0.104
5 Year	0.151	0.092	0.234	0.172	0.307	0.200
10 Year	0.205	0.126	0.309	0.212	0.408	0.248
25 Year	0.266	0.170	0.390	0.245	0.518	0.348
50 Year	0.302	0.190	0.437	0.260	0.582	0.368
100 Year	0.347	0.222	0.494	0.279	0.661	0.420

Table 2.11: Comparison of Existing Targets & Proposed Flows – 24-Hour SCS Type II

As shown in **Tables 2.9**, **Table 2.10** and **Table 2.11**, the proposed flows are less than or equal to the existing flows for the 2 through 100 year storm events at all target locations. As noted above, discharge rates to Outlets 1 and 3 will be addressed through a subsequent Site Plan Application process for St. Anne's School.

2.16 Storm Servicing

The storm sewer system (minor system) will be designed for the 5 year return storm as per the Town of Aurora standards.

The major system flow drainage (up to the 100 year storm event) will generally be conveyed overland along the road rights-of-way (ROW).

The storm sewer system will typically be designed with grades between 0.5% and 2.0%. Throughout the site, the storm sewer will be constructed at a minimum depth of 1.5 m to provide frost protection and 2.8 m to service basements. It is anticipated that all storm sewers will be able to be provided deep enough to service basements by gravity, however due to the superpipe storage, it is anticipated that portions of the site will require sump pumps to avoid basement flooding due to the hydraulic grade line in the sewer.

The storm drainage system will be designed in accordance with the Town of Aurora and MECP guidelines, including the following:

- Pipes to be sized to accommodate runoff from a 5 year storm event;
- Minimum Pipe Size: 300 mm diameter;
- Maximum Flow Velocity: 4.5 m/s;
- Minimum Flow Velocity: 0.45 m/s for first run, 0.6 m/s for second to fourth run, 0.75 m/s for subsequent runs; and
- Minimum Pipe Depth: 1.5 m to obvert, 2.8 m to obvert to service basements.

The rainfall intensity will be calculated based on Town of Aurora parameters listed below in **Table 2.12**:

Return Period Storm	A	В	С
2 Year	647.7	4	0.784
5 Year	929.8	4	0.798
10 Year	1021	3	0.787
25 Year	1100	2	0.776
50 Year	1448	3	0.803
100 Year	1770	4	0.820

Table 2.12 – Rainfall Intensity Parameters

2.17 Overland Flow

Major system flows (greater than the 5 year up to the 100 year storm event) will be conveyed within the road right-of-ways to 100 year capture points. At detailed design, the 100 year capture points will be designed to capture the 100 year flows assuming 50% blockage at a depth not exceeding the maximum ponding depth per Town of Aurora criteria.

2.18 Regulatory Floodline

Based on LSRCA's floodplain mapping, the Regulatory floodplain associated with the tributary of Tannery Creek to the east is well below the proposed development. The Regulatory floodline associated with the tributary of Tannery Creek to the west/southwest was updated during the approval of the Shining Hill Estates Phase 2 development, and is plotting on the **Figure 5.1**, which shows that the proposed development is outside of the Regulatory floodline.

3.0 SANITARY SERVICING

3.1 Existing Sanitary Sewer System

The existing buildings on the subject lands are serviced with an existing 200 mm diameter sanitary service connection at the property line, opposite of Willow Farm Lane. It is currently unknown what the size of the private sanitary sewer on the property is, however, the existing sanitary manholes were surveyed which indicates the location of the sewer.

The existing sanitary sewer servicing the subject lands discharges to an existing 200 mm diameter sanitary sewer that crosses St. John's Sideroad where it continues south on Willow Farm Lane, east on Heatherfield Lane as a 300 mm diameter, through an easement east and north to St. John's Sideroad, east along St. John's Sideroad, and discharges into a 975 mm diameter trunk sanitary sewer on Yonge Street. The existing sewer system is shown on **Figure 3.1**.

The existing sanitary sewer system was sized to accommodate an area of 12.0 ha and a population of 750 from the subject lands.

A downstream analysis of the existing system up to the Yonge Street trunk is provided in **Appendix G**, which includes the addition of the approved Shining Hill Estates Phase 2 development together with the 12.0 ha and population of 750 from the subject lands. The results show that several runs of the sanitary sewer system are between 90% and 95% capacity.

3.2 Proposed Sanitary Sewer System

The preliminary layout for the proposed sanitary sewer within the subject lands is provided on **Figure 3.1** and **Figure 3.2**.

The sanitary sewers within the proposed development will have slopes ranging between 0.5% and 2% (typically) and will be provided at 3 m to 5 m deep.

The sanitary sewer system will be designed in accordance with the Town of Aurora and MECP criteria, including but not limited to:

- Residential Sanitary Generation Rate: 400 l/c/d,
- Population Density:
 - 3.8 people/unit (Single Family)
 - 3.5 people/unit (Townhouse)
 - o 0.30 persons/student (School)
 - Note that SAS will be a boarding school and therefore the ultimate population has been used (800 persons total), without apply the 0.3 persons/student rate.
- Peaking Factor: Harmon (Min. 2.0, Max. 4.0),
- → Infiltration Rate: 0.26 L/s/ha,
- Minimum Pipe Size: 200 mm diameter,
- Minimum Pipe Cover: 2.8 m,
- Minimum Full Flow Velocity: 0.60 m/s, and
- Maximum Velocity: 3.0 m/s.

The downstream analysis to the Yonge Street trunk sewer was updated to add the proposed development flows. The proposed development includes 13.61 ha and an equivalent population of 1284 (including residential units, neighbourhood park, and the St. Anne's School). Refer to **Appendix G**, for the sanitary sewer design sheet. The results show that with the addition of the proposed development, that four (4) 300 mm diameter sewer runs on St. John's Sideroad would theoretically be between 104% to 107% capacity, and that three (3) runs on Heatherfield Lane and one (1) run in the easement would be between 100% to 108% capacity.

Further analysis and consultation with the Town will be completed at detailed design to confirm whether the surcharging of the Heatherfield Lane sanitary sewer is acceptable. If it is not and to avoid sewer upgrades on Heatherfield Lane, an option is to install a new sanitary sewer parallel to St. John's Sideroad to discharge into the existing 300 mm diameter sewer on St. John's Sideroad at existing manhole MH72A, as shown on Figure 3.1. The St. John's Sideroad sewer is significantly lower in elevation than the existing and proposed development and has a drop structure at the junction of the easement and St. John's Sideroad. A hydraulic grade line analysis was completed that shows that the 300 mm diameter sewer on St. John's Sideroad can convey the proposed flows without surcharging the sanitary sewer in the easement (upstream of existing MH72A). There are two existing service connections to the St. John's Sideroad sewer that service 77 St. John's Sideroad and 15900 Yonge Street. Based on site reconnaissance, these dwellings are significantly higher than St. John's Sideroad, and based on LSRCA's floodplain mapping the elevation of the dwellings are at least 251.86, which is more than 4.5 m higher than the proposed hydraulic grade line in the sewer. A maximum of 0.12 m hydraulic grade line surcharge on the St. John's Sideroad sanitary sewer at MH72A will not impact these service connections. Preliminary sanitary sewer design sheets and the hydraulic grade line analysis are provided in Appendix G.

4.0 WATER SUPPLY AND DISTRIBUTION

4.1 Existing Water Distribution

The existing buildings on the subject lands are serviced with an existing private watermain that extends from a 200 mm diameter service connection at the property line, opposite of Willow Farm Lane. The size of the private watermain has been reported to be 150 mm diameter, although drawings are not available. Several existing private hydrants were surveyed and a subsurface utility investigation is being completed to verify the location of the private watermain.

The existing watermain servicing the subject lands crosses St. John's Sideroad with a 200 mm diameter watermain where there is a tee connection to the existing ductile iron watermain on the south boulevard of St. John's Sideroad at the intersection of Willow Farm Lane. At the tee, the watermain is a 300 mm diameter to the east, 200 mm diameter to the west, and 200 mm diameter south on Willow Farm Lane. The existing watermain system is illustrated on **Figure 2.3**.

4.2 **Proposed Water System**

Two connections to the existing system are proposed at St. John's Sideroad. The preliminary layout for the proposed watermain system is provided on **Figure 2.3**.

Municipal Engineering Solutions (MES) has been completed a Water Distribution Analysis for the proposed development (refer to **Appendix H**).

The watermain system will designed in accordance with the Town of Aurora and MECP criteria including:

- Residential water usage rate: 400 l/c/d,
- Schools water usage rate: 110 L/student/d,
- ➡ Population Density:
 - 3.8 people/unit (Single Family)
 - 3.5 people/unit (Townhouse)
 - 2.5 people/unit (Apartment)
- Minimum Pipe Size: 200 mm diameter (150 mm diameter for cul-de-sacs, at the discretion of the Town),
- Minimum Pipe Depth: 1.8 m, and
- Maximum Hydrant Spacing: 150 m.

5.0 GRADING

5.1 Existing Grading Conditions

Under existing conditions, the site slopes in several directions to several drainage draws to the south, east, and north. East of the proposed development is a deep valley. Site grading alteration has been completed on the property in the past to accommodate the past estate residential use. This includes berms, driveways, parking areas, structures, gardens/landscaping and leveling of fields for recreational use. The existing topography has slopes that range from nearly flat at the south-central portion of the site to approximately 30% at existing embankments. The ground surface elevations through the study area range from approximately 274.25 m in the west to approximately 260 m in the northeast corner.

5.2 Proposed Grading Concept

In general, the proposed development will be graded in a manner which will satisfy the following goals:

- Satisfy the Town of Aurora lot and road grading criteria including:
 - Minimum Road Grade: 0.5%
 - Maximum Road Grade: 6.0%
 - Minimum Lot Grade: 2%
 - Maximum Lot Grade: 5%
- Provide continuous road grades for overland flow conveyance;
- Minimize the need for retaining walls;
- •> Minimize the volume of earth to be moved and minimize cut/fill differential;
- Minimize the need for rear lot catchbasins; and
- Achieve the stormwater management objectives required for the proposed development.

A preliminary grading plan is provided on Figure 5.1.

At the detailed design stage, the preliminary grading shown on **Figure 5.1** will be subject to a more in-depth analysis in an attempt to balance the cut and fill volumes and minimize slopes and walls.

6.0 **RIGHTS-OF-WAY AND SIDEWALKS**

The proposed road right-of-way cross-sections are provided on **Figures 6.1**, **6.2**, **6.3**, and **6.4**. The sections have been developed to facilitate the LID measures in the boulevard, while still maintaining the general geometric layout of the pavement and street furniture per the Town's standard cross-section as close as possible. The 23 m wide collector road right-of-way has been designed in consultation with the transportation consultant and planning consultant to incorporate a proposed multi-use path.

The proposed sidewalk location plan is provided on **Figure 6.5**. For the areas where sidewalk will be provided along one side of the street, sidewalks will be typically be located on north or east side of the boulevard or the boulevard side where the larger number of frontages can be serviced.

7.0 EROSION AND SEDIMENT CONTROL DURING CONSTRUCTION

During the detailed design stage, erosion and sediment control measures will be designed with a focus on erosion control practices (such as stabilization, track walking, staged earthworks, etc.) as well as sediment controls (such as fencing, mud mats, catchbasin sediment control devices, rock check dams and temporary sediment control ponds). These measures will be designed and constructed as per the Stormwater Management Technical Guidelines document (LSRCA, 2016). A detailed erosion and sediment control plan will be prepared for review and approval by the Town of Aurora and LSRCA prior to any proposed grading being undertaken. This plan will address phasing, inspection and monitoring aspects of erosion and sediment control. All reasonable measures will be taken to ensure sediment loading to the adjacent watercourses and properties are minimized both during and following construction.

8.0 UTILITY CONSIDERATIONS

The utility companies (hydro, natural gas, and telecommunications) have been contacted to circulate the proposed draft plan of subdivision to confirm whether there is sufficient servicing capacity.

9.0 SUMMARY

This Functional Servicing and Stormwater Management Report has been prepared in support of the Draft Plan of Subdivision and Zoning By-law Amendment applications for the proposed Shining Hill Estates Phase 3 development in the Town of Aurora. This report outlines the means by which the proposed development can be graded and serviced in accordance with the Town of Aurora, Lake Simcoe Region Conservation Authority, Lake Simcoe Protection Plan, and the Ministry of Environment, Conservation and Parks design criteria and policies.

General Information

- The existing land use is estate residential;
- The site is located in the East Holland River Watershed draining to the Tannery Creek; and
- The proposed development consists of low density residential, a neighbourhood park, open space, a private school (St. Anne's School (SAS)), and proposed roads.

Stormwater Management and Storm Servicing

- Quantity, Peak Flow Control: Peak flow control will be provided by the underground storage and superpipes to control proposed runoff rates in the 2 through 100 year storm events;
- Quantity, Volume Control: The on-site retention/detention of the 25 mm rainfall runoff will be provided to the extent feasible by a treatment train of LIDs and BMPs through the use of rear yard infiltration trenches, rain garden/bioswales, and catchbasin filtration trenches in the right-of-way boulevard;
- Quality Control, TSS: MECP Enhanced (Level 1) water quality protection will be provided using a treatment train of LIDs and BMPs including catchbasin sumps and "goss traps", rear yard infiltration trenches, rain garden/bioswales, catchbasin filtration trenches in the right-of-way boulevard;
- Quality Control, Phosphorus: A phosphorus budget analysis was completed using the MECP phosphorus budget tool, which shows that the proposed phosphorus export will be approximately 2.92 kg/yr. The phosphorus export is being mitigated through the use of rear yard infiltration trenches, rain garden/bioswales with sorbtive media, catchbasin infiltration/filtration trenches with sorbtive media in the right-of-way boulevard, and underground storage. An offsetting fee will also be paid to LSRCA in lieu of meeting the zero export criteria;
- Erosion Control: The runoff volume from a 25 mm rainfall event will be detained over 24 hours, to the extent feasible by the underground storage and superpipes;
- Water Budget: Golder Associates has completed a water budget analysis to demonstrate that the proposed site water annual infiltration rates will be approximately equal to existing rates. Catchment based water budgets have been completed to the receiving tributaries and wetlands;

•• Storm Servicing:

- Storm runoff will be conveyed by storm sewers designed in accordance with Town of Aurora and MECP criteria;
- Storm sewers will generally be designed for the 5 year storm event; and
- Adequate 100 year overland flow routes will be provided.

Sanitary Servicing

- ➡ There is an existing 200 mm diameter sanitary sewer service connection that services the property that discharges to the sanitary sewer in the St. Andrew's on The Hill subdivision, ultimately discharging to the 975 mm diameter trunk sanitary sewer at Yonge Street and St. John's Sideroad;
- A downstream sanitary sewer system analysis has been completed;
- ➡ The existing St. John's Sideroad sanitary sewer will theoretically flow slightly above 100% capacity, however, a hydraulic grade line analysis has been completed that demonstrates that the surcharging will not negatively affect any existing service connections; and
- ➡ The downstream sanitary sewer analysis shows that the Heatherfield Lane sanitary sewer may flow slightly above 100% capacity if the proposed sanitary sewer flows are discharged to the St. Andrew's on The Hill sanitary sewer system. Further analysis and consultation with the Town will be completed at detailed design to confirm whether the surcharging of the Heatherfield Lane sanitary sewer is acceptable;
 - Alternatively, a new external sanitary sewer running parallel to St. John's Sideroad is possible to convey sanitary flows, connecting to the 300 mm diameter sanitary sewer on St. John's Sideroad at MH72A.

Water Supply and Distribution

- ➡ There is an existing 200 mm transitioning to a 300 mm diameter watermain on St. John's Sideroad;
- ➡ The development is proposed to be serviced with two connections to the St. John's Sideroad watermain;
- MES has completed a watermain hydraulic analysis to ensure that there will be sufficient domestic and fire flows to service the development;
- Water supply allocation is required from the Town.

Grading

- The proposed development grading has been developed to match to the existing surrounding grades, and provide conveyance of stormwater runoff, including external drainage; and
- The lot grading will be subject to further grading design at the architectural design stage prior to the building permit applications.

Right-of-Ways and Sidewalks

Site specific right-of-way cross sections are proposed to facilitate the low impact development measures in the boulevard and multi-use paths.

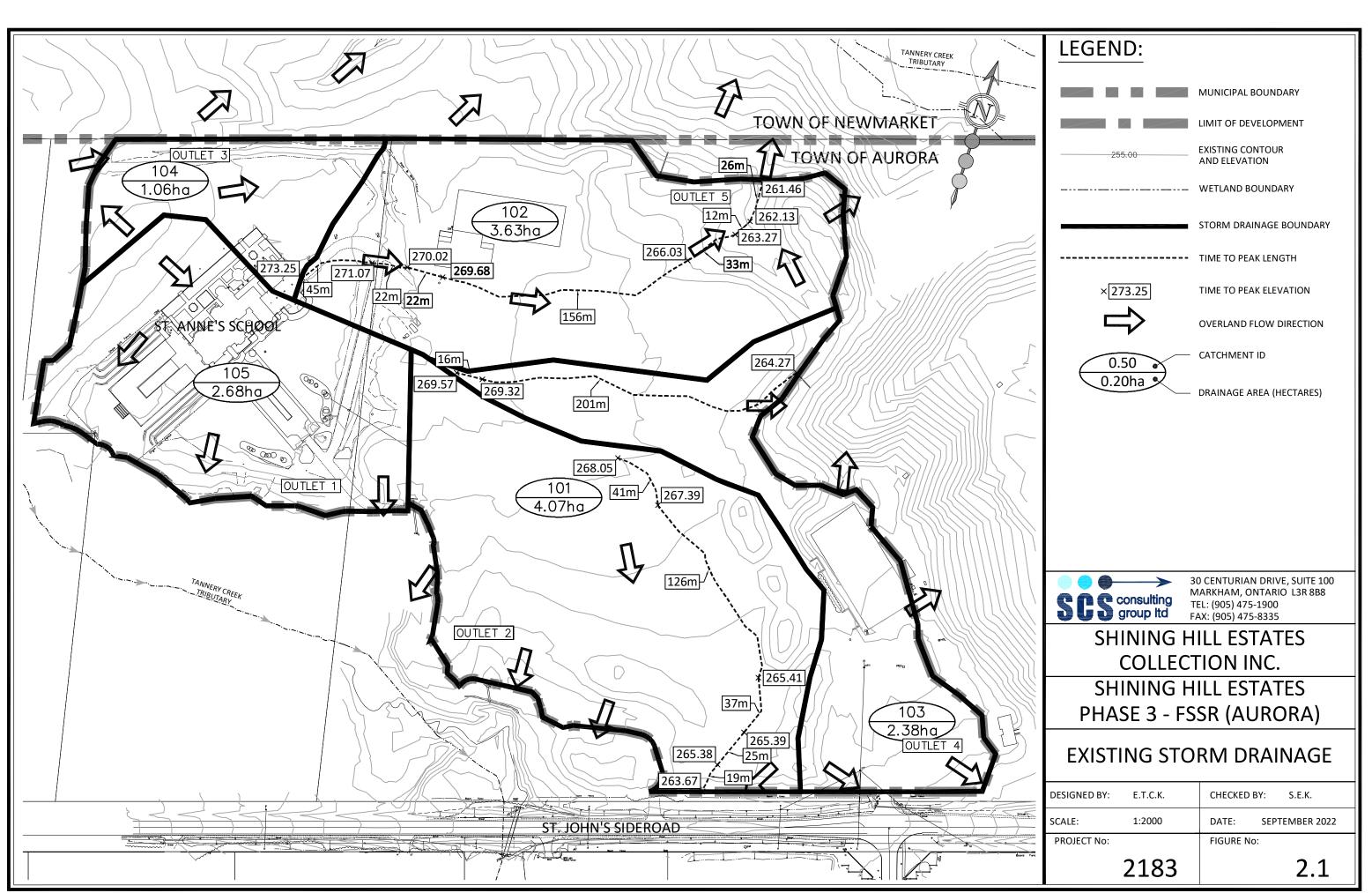
Erosion and Sediment Control during Construction

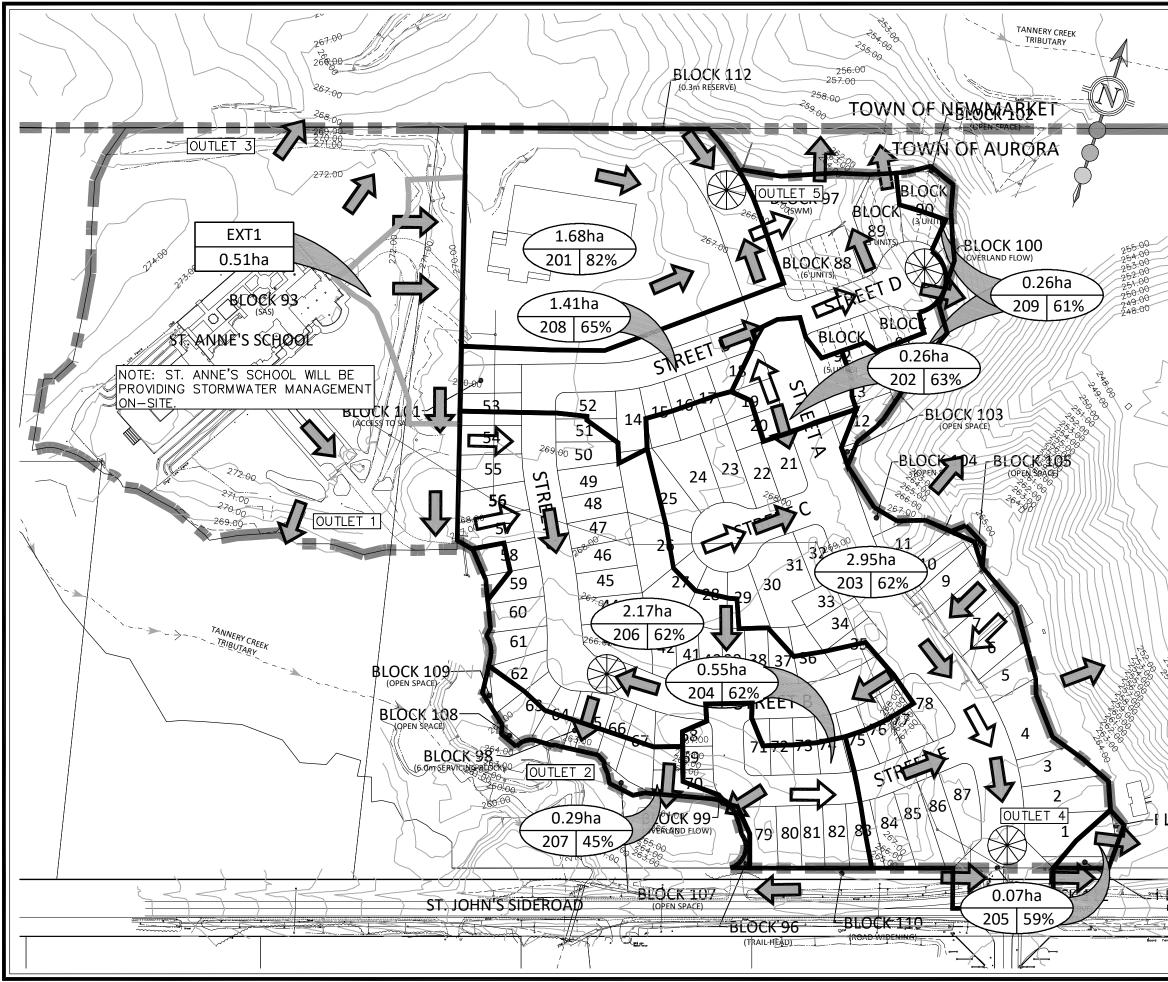
An erosion and sediment control plan will be prepared at the detailed engineering stage, in accordance with the Stormwater Management Technical Guidelines document (LSRCA, 2022).

Utility Considerations

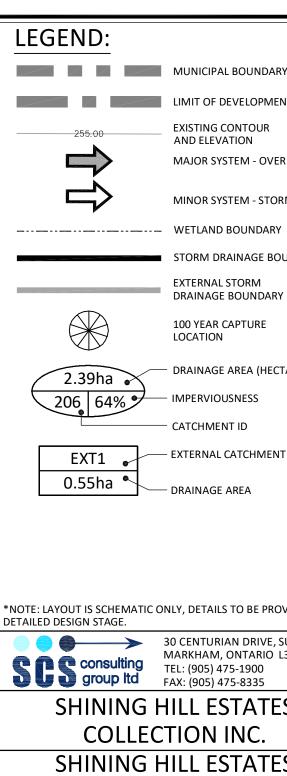
➡ The utility companies have been contacted to confirm whether there is sufficient servicing capacity.

Respectfully Submitted:


SCS Consulting Group Ltd.


May when

Marjorie MacDonald, EIT mmacdonald@scsconsultinggroup.com


Erich Knechtel, P. Eng. eknechtel@scsconsultinggroup.com

File: P: \2183 Shining Hill Estates \Drawings \FSSR-Phase 3\Fig\Report Figures \2183P-FIGS-STRM-EXST-2.1.dwg - Revised by <RCORTEZ> : Thu, Sep 01 2022 - 9:44am

File: P: \2183 Shining Hill Estates \Drawings \FSSR-Phase 3 \Fig \Report Figures \2183P-FIGS-STRM-PROP-2.2.dwg - Revised by <YKASPIN> : Mon, Nov 01 2021 - 10:06am

LIMIT OF DEVELOPMENT

EXISTING CONTOUR AND ELEVATION

MAJOR SYSTEM - OVERLAND FLOW

MINOR SYSTEM - STORM SEWER

WETLAND BOUNDARY

STORM DRAINAGE BOUNDARY

EXTERNAL STORM DRAINAGE BOUNDARY

100 YEAR CAPTURE

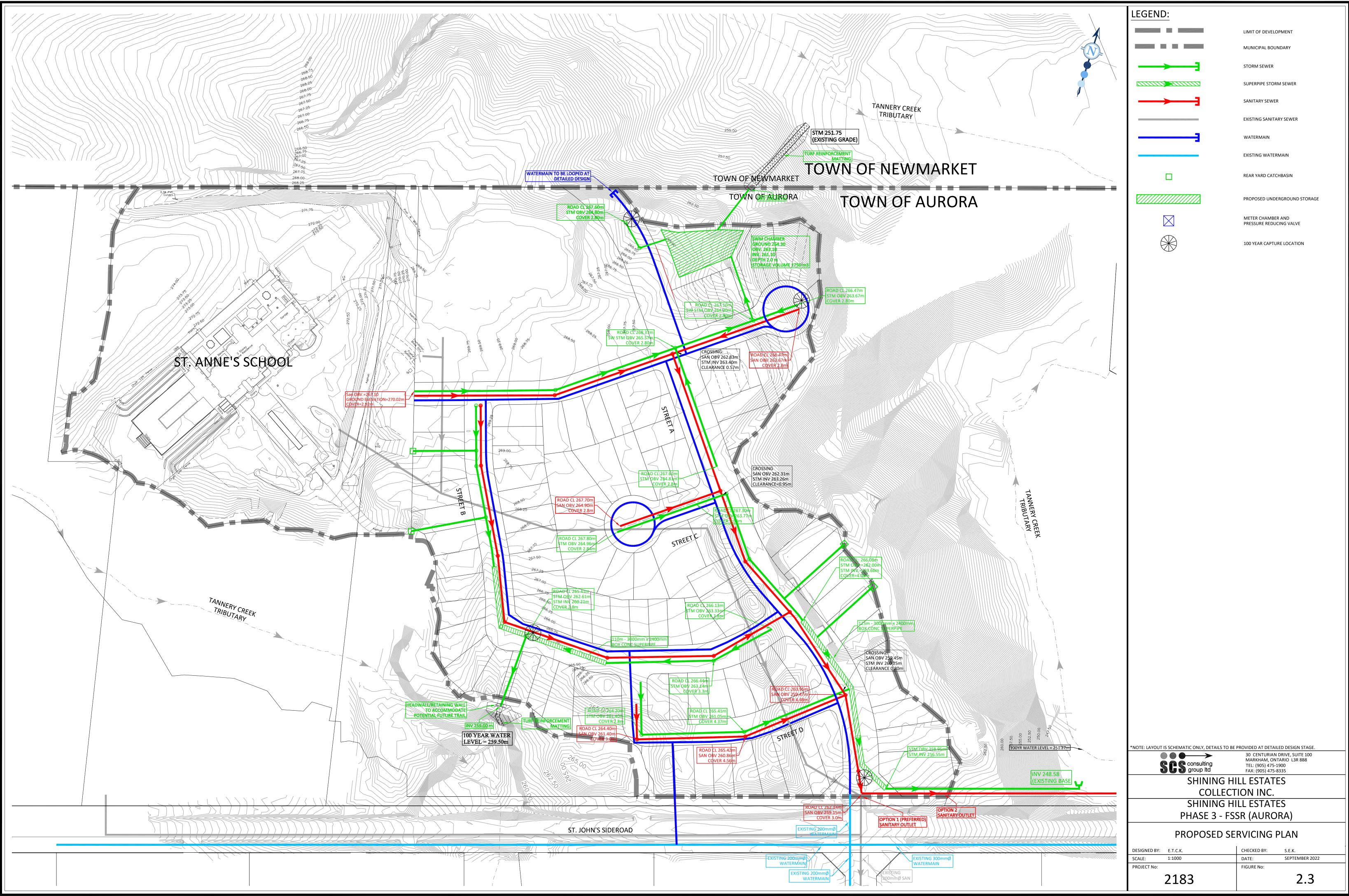
DRAINAGE AREA (HECTARES)

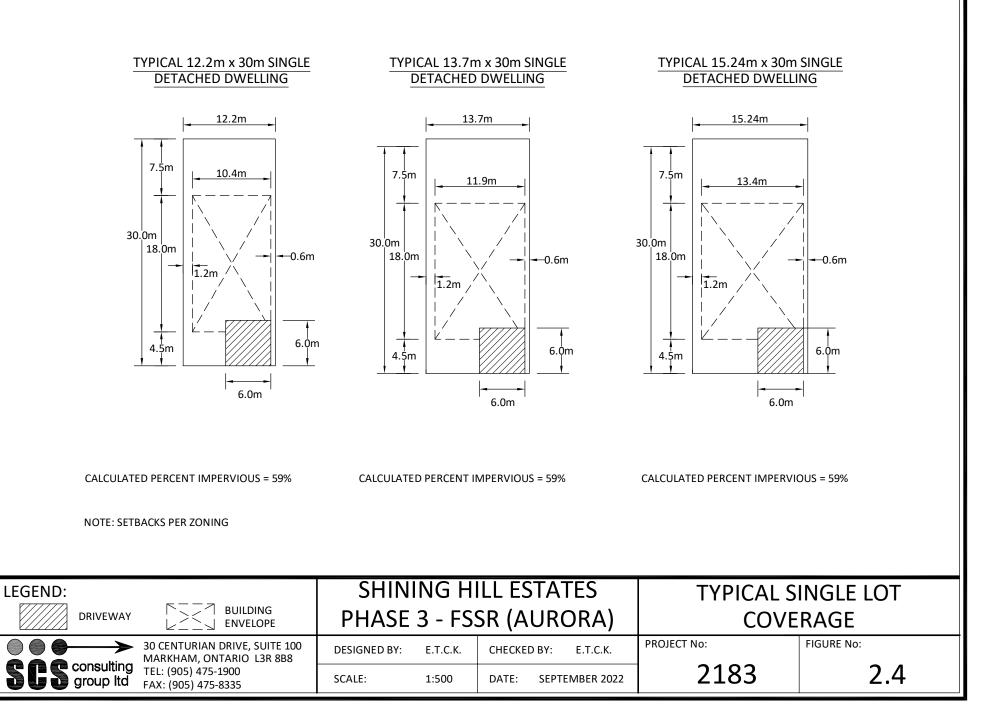
IMPERVIOUSNESS

CATCHMENT ID

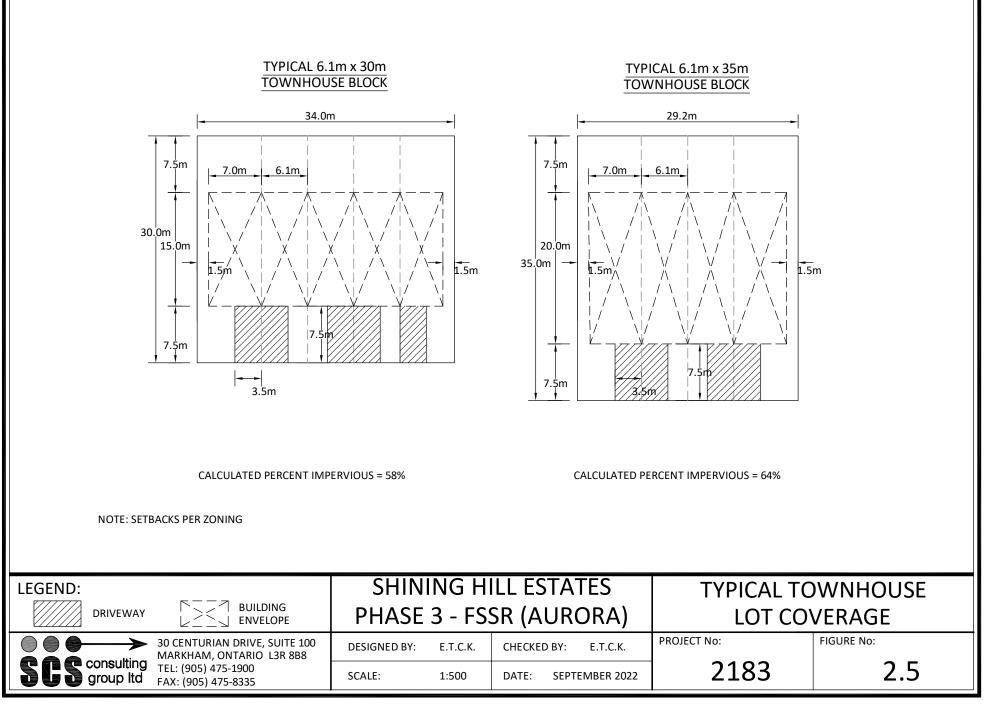
EXTERNAL CATCHMENT ID

DRAINAGE AREA

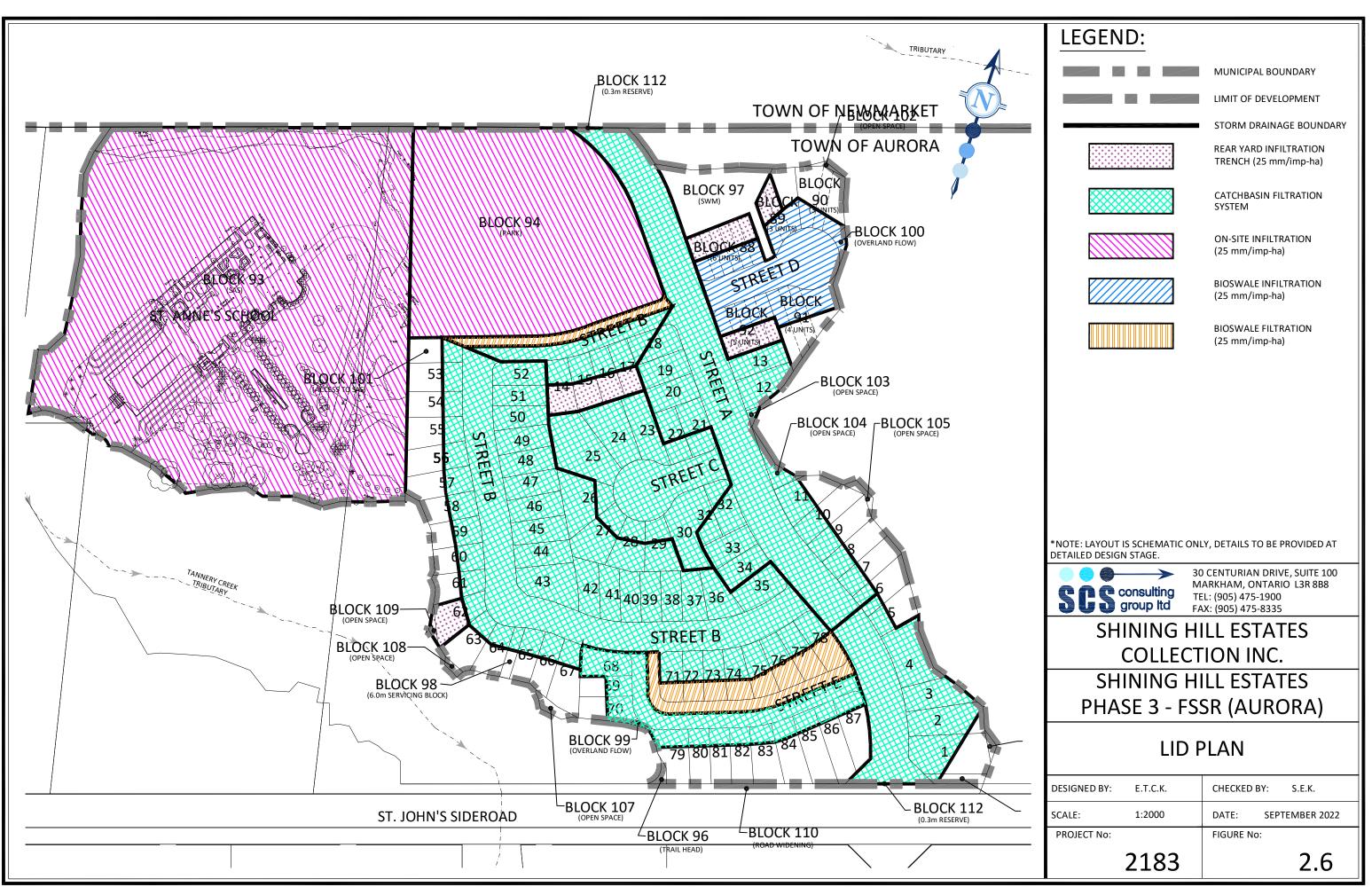

*NOTE: LAYOUT IS SCHEMATIC ONLY, DETAILS TO BE PROVIDED AT

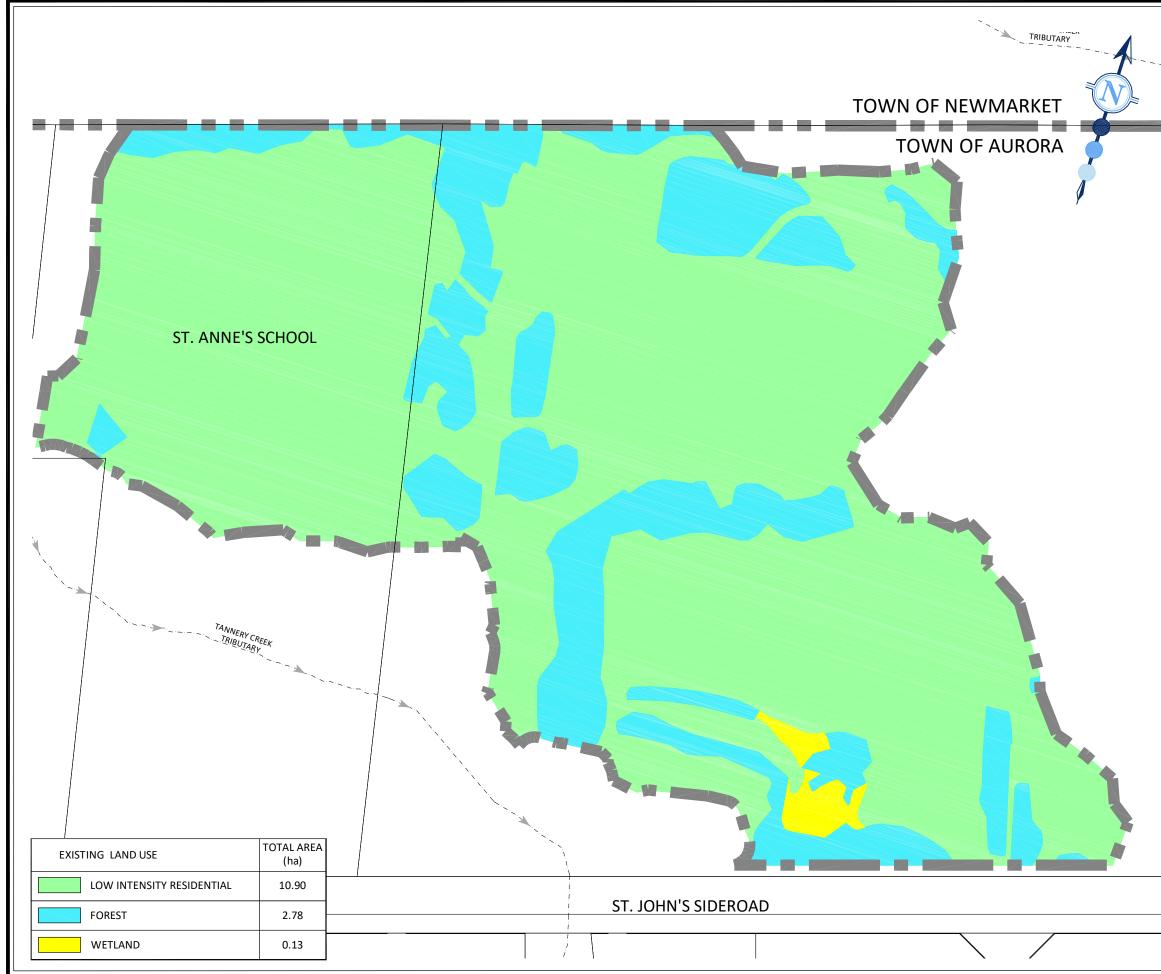

30 CENTURIAN DRIVE, SUITE 100 MARKHAM, ONTARIO L3R 8B8 TEL: (905) 475-1900 FAX: (905) 475-8335

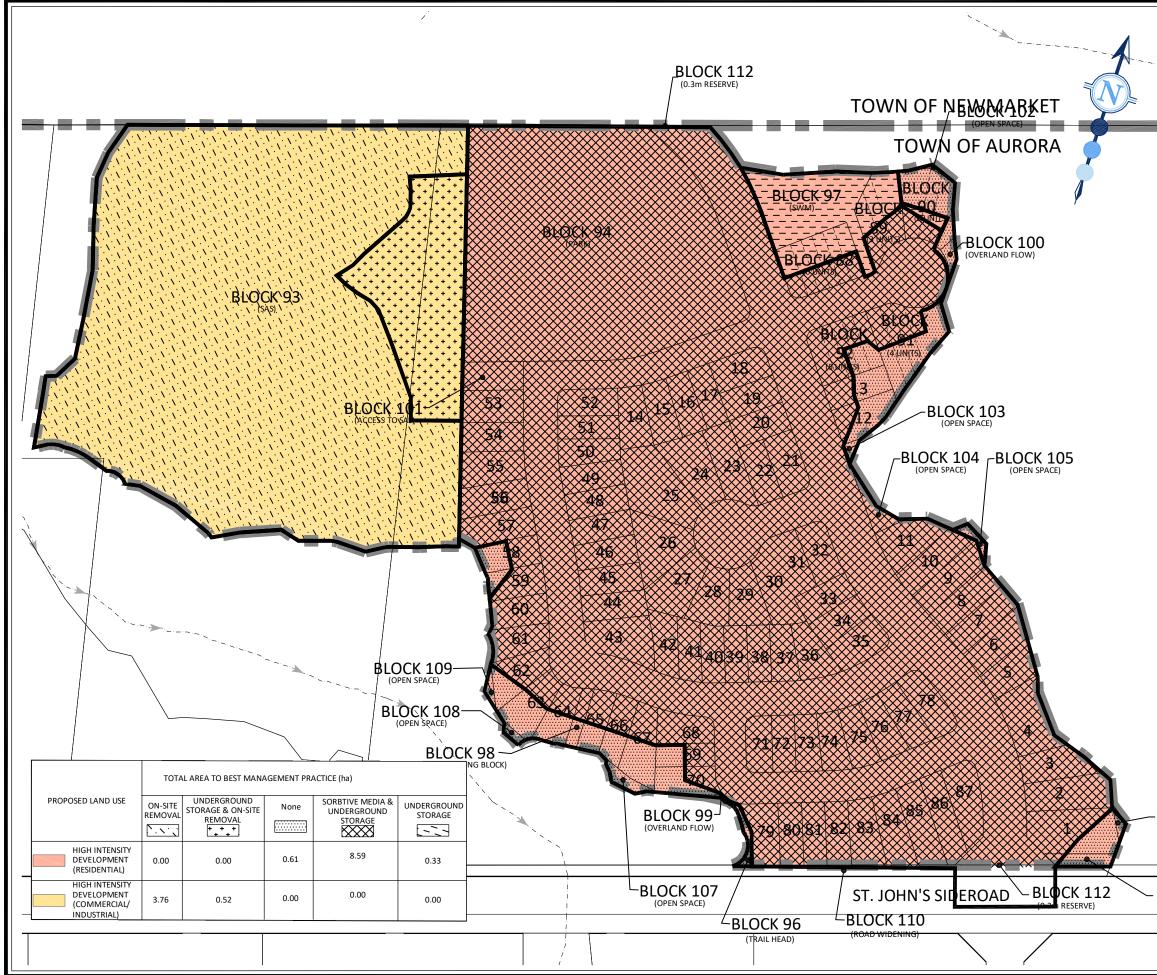
SHINING HILL ESTATES COLLECTION INC. SHINING HILL ESTATES PHASE 3 - FSSR (AURORA)


PROPOSED STORM DRAINAGE

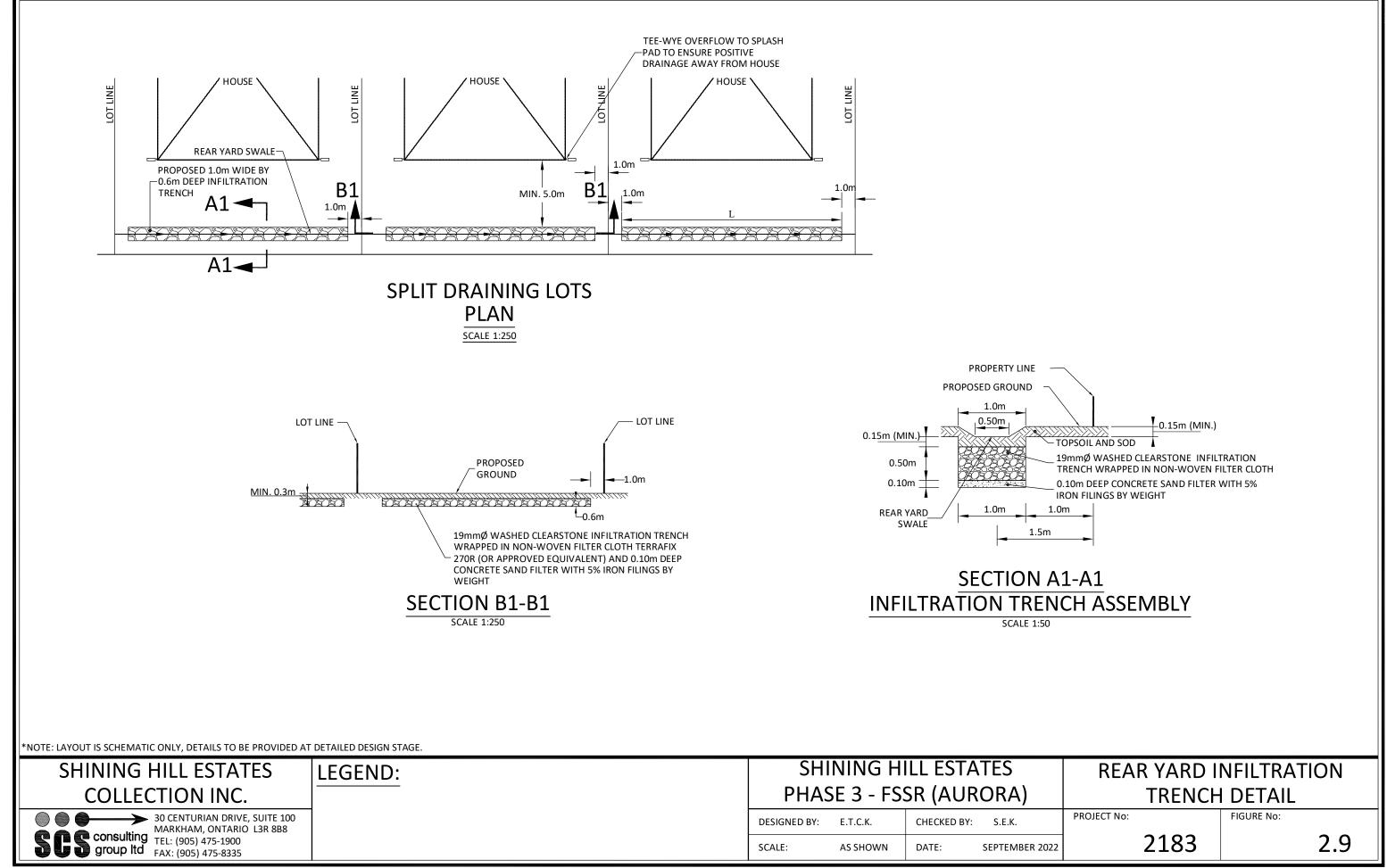
DESIGNED BY:	E.T.C.K.	CHECKED BY: S.E.K.
SCALE:	1:2000	DATE: SEPTEMBER 2022
PROJECT No:		FIGURE No:
	2183	2.2

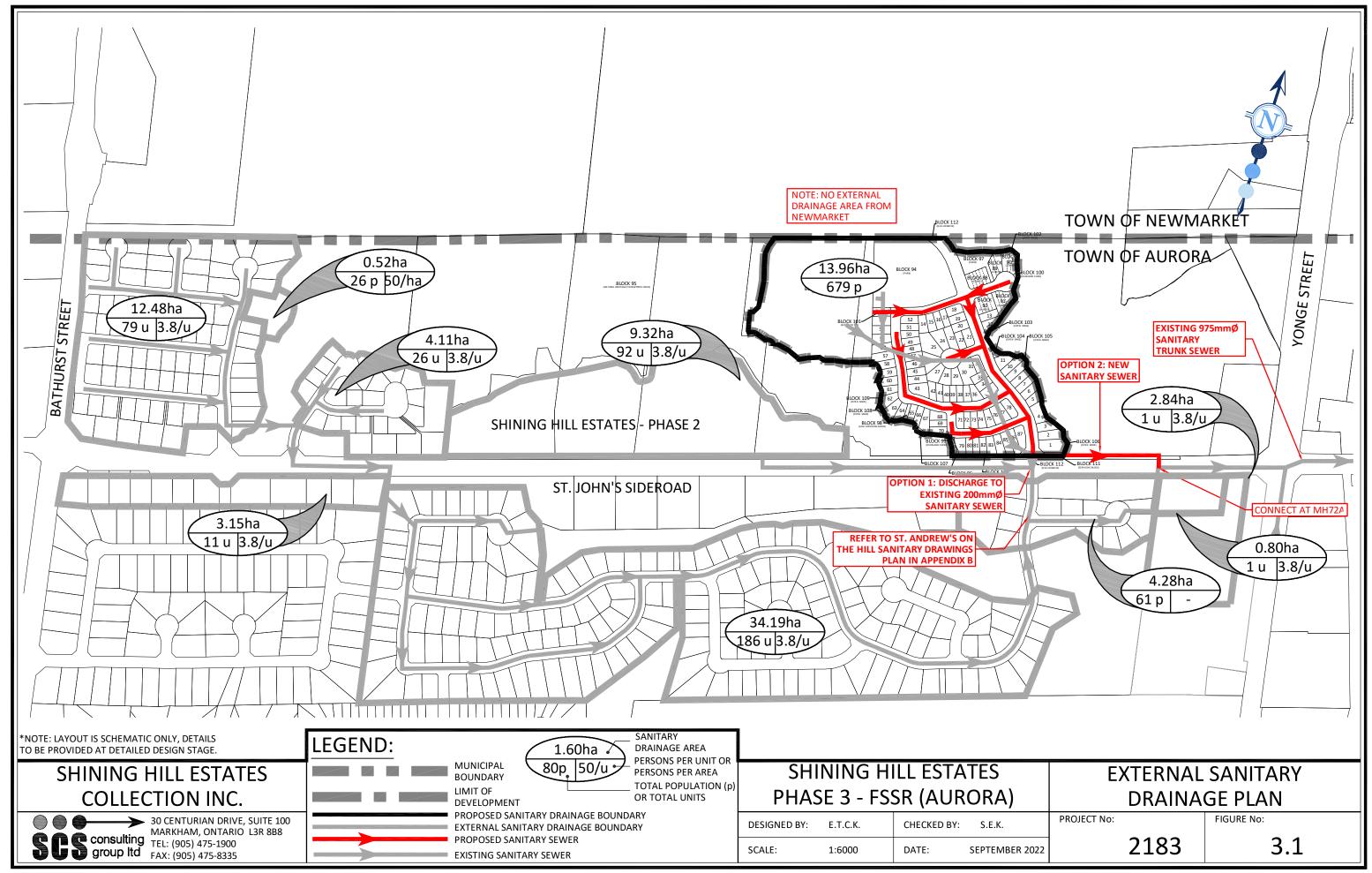


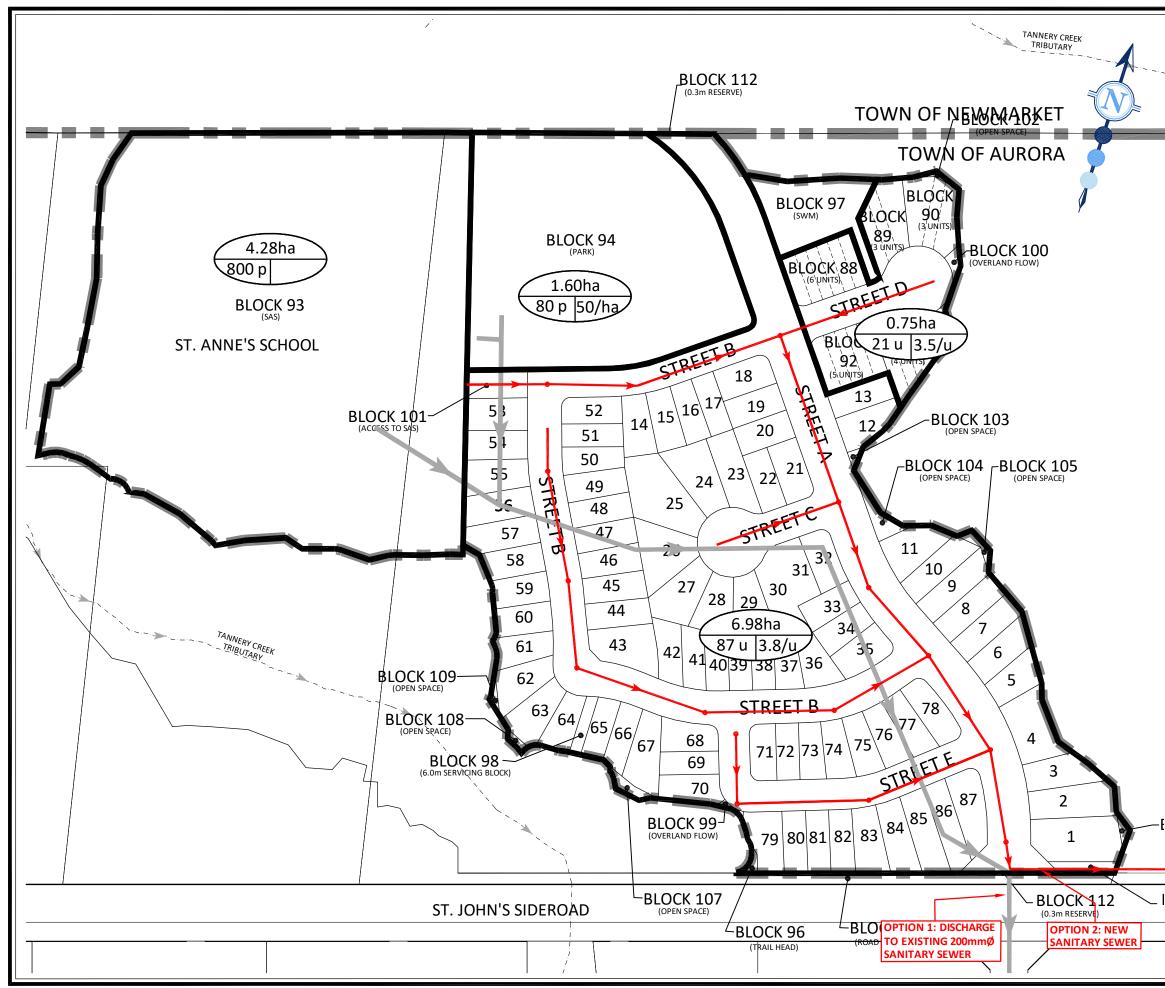

File: P:\2183 Shining Hill Estates\Drawings\FSSR-Phase 3\Fig\Report Figures\2183P-FIGS-LOTS-2.4.dwg - Revised by <RCORTEZ> : Thu, Sep 01 2022 - 9:58am


File: P: \2183 Shining Hill Estates\Drawings\FSSR-Phase 3\Fig\Report Figures\2183P-FIGS-LOTS-2.5.dwg - Revised by <RCORTEZ> : Thu, Sep 01 2022 - 10:00am

File: P: \2183 Shining Hill Estates\Drawings\FSSR-Phase 3\Fig\Report Figures\2183P-FIGS-LIDS-2.6.dwg - Revised by <RCORTEZ> : Thu, Sep 01 2022 - 9:16am

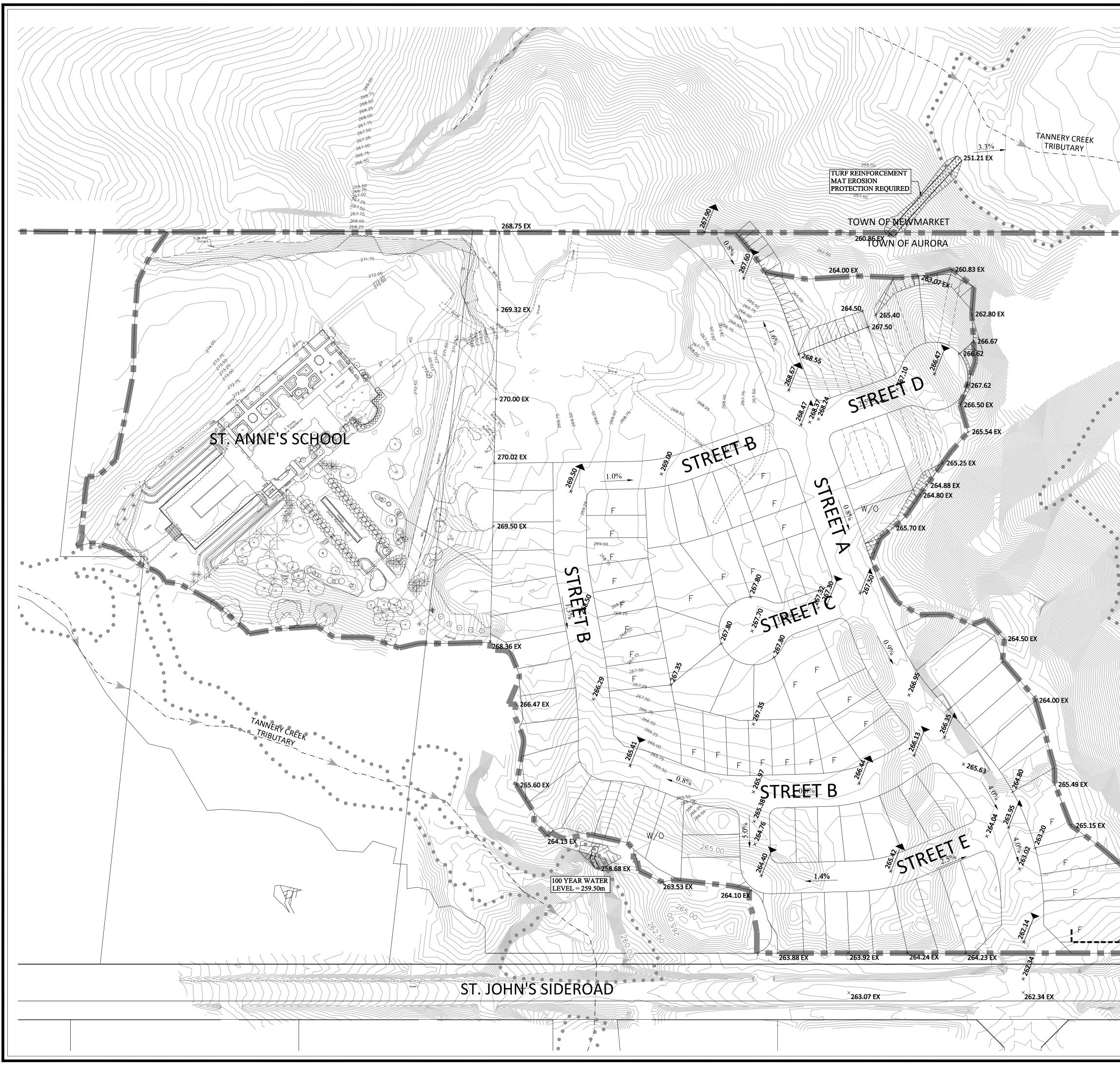


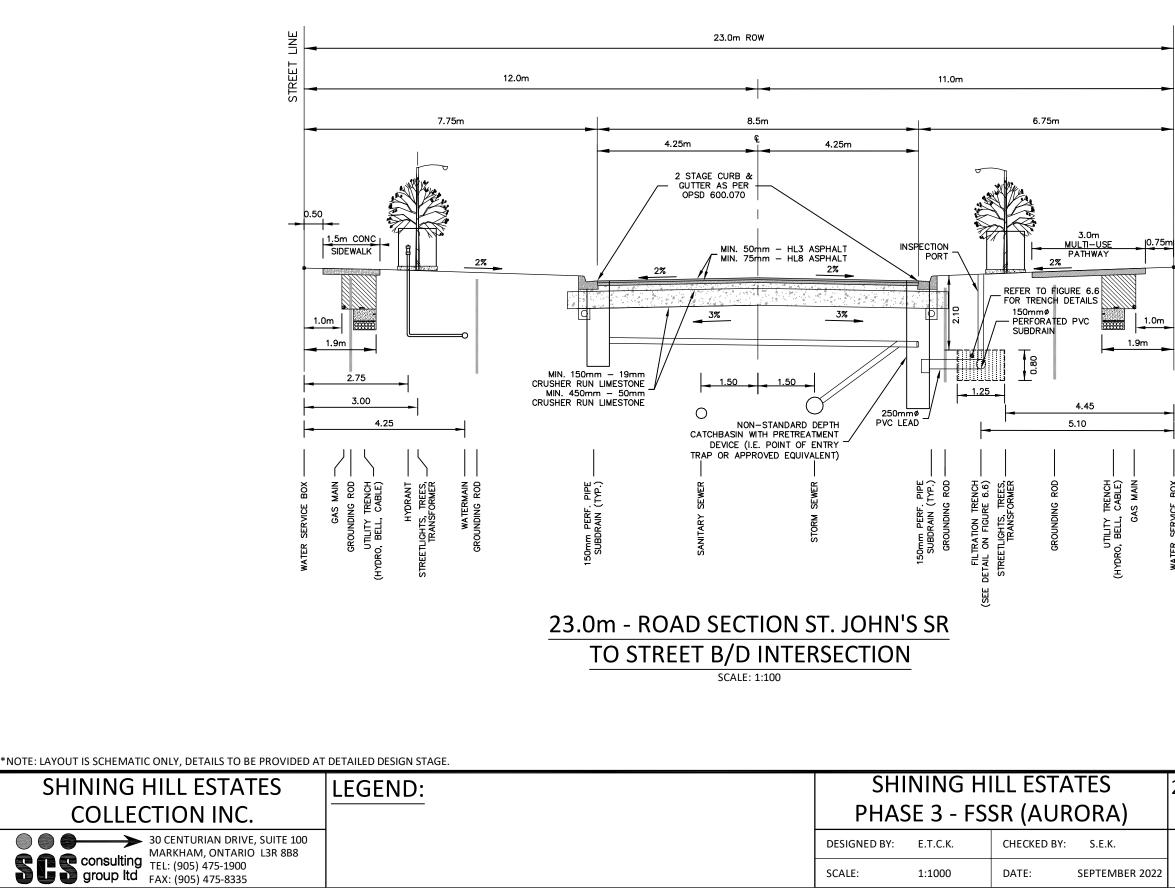

-	1
LEGEND:	
	MUNICIPAL BOUNDARY
	LIMIT OF DEVELOPMENT
+	
) CENTURIAN DRIVE, SUITE 100 ARKHAM, ONTARIO L3R 8B8
	EL: (905) 475-1900 AX: (905) 475-8335
SHINING H	ILL ESTATES
COLLECT	TON INC.
SHINING H	ILL ESTATES
PHASE 3 - FS	SR (AURORA)
EXISTING PH	IOSPHORUS
BUD	GET
DESIGNED BY: E.T.C.K.	CHECKED BY: S.E.K.
SCALE: 1:2000	DATE: SEPTEMBER 2022
PROJECT No:	FIGURE No:
2183	2.7



File: P:\2183 Shining Hill Estates\Drawings\FSSR-Phase 3\Fig\Report Figures\2183P-FIGS-PHSB-PROP-2.8.dwg - Revised by <RCORTEZ> : Thu, Sep 01 2022 - 10:09am

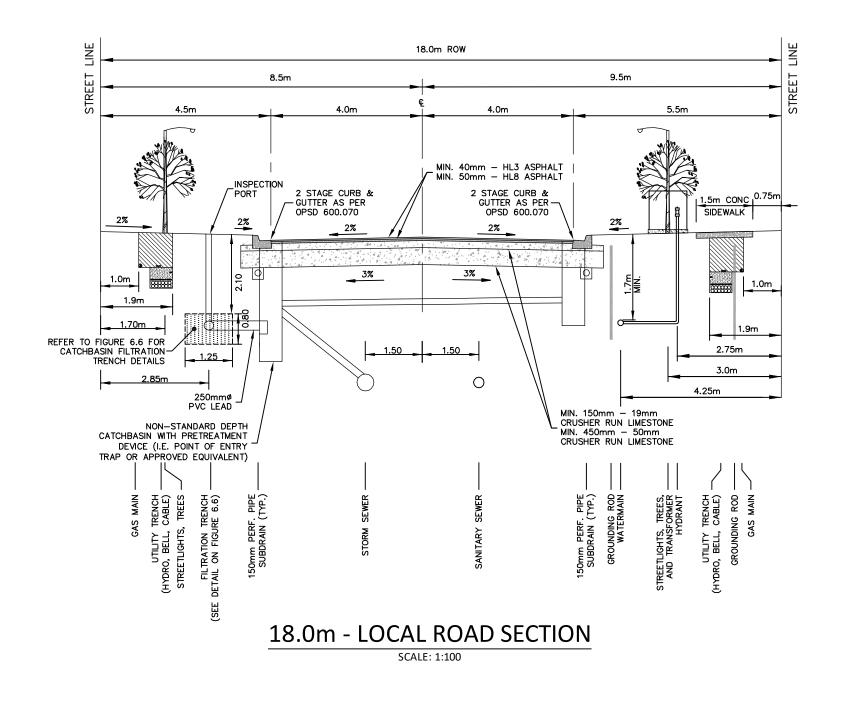
	LEGEND:	
		MUNICIPAL BOUNDARY
		LIMIT OF DEVELOPMENT
		STORM DRAINAGE BOUNDARY
	*NOTE: LAYOUT IS SCHEMATIC OF DETAILED DESIGN STAGE.	NLY, DETAILS TO BE PROVIDED AT
		30 CENTURIAN DRIVE, SUITE 100 MARKHAM, ONTARIO L3R 8B8
		TEL: (905) 475-1900 FAX: (905) 475-8335
	SHINING F	IILL ESTATES
		TION INC.
		IILL ESTATES
	PHASE 3 - FS	SSR (AURORA)
ΕL	PROPOSED I	PHOSPHORUS
	BUI	DGET
_	DESIGNED BY: E.T.C.K.	CHECKED BY: S.E.K.
l L E	SCALE: 1:2000	DATE: SEPTEMBER 2022
	PROJECT No:	FIGURE No:
	2183	2.8





File: P:\2183 Shining Hill Estates\Drawings\FSSR-Phase 3\Fig\Report Figures\2183P-FIGS-PROP-SANI-3.2.dwg - Revised by <RCORTEZ> : Thu, Sep 01 2022 - 10:18am

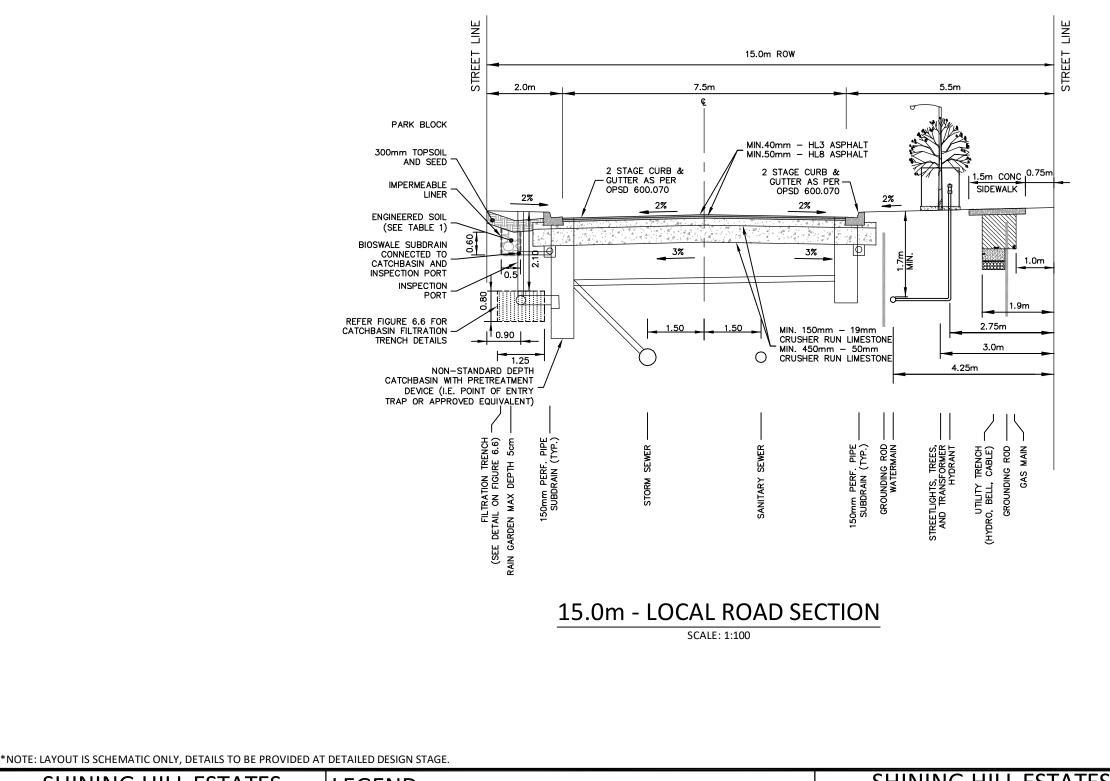
	LEGEND:	
į	> / / $>$	MUNICIPAL BOUNDARY
		LIMIT OF DEVELOPMENT
-		SANITARY DRAINAGE BOUNDARY
	1.60ha 80p.50/ha	SANITARY SEWER AND FLOW DIRECTION EXISTING SANITARY SEWER AND FLOW DIRECTION SANITARY DRAINAGE AREA PERSONS PER UNIT OR PERSONS PER AREA TOTAL POPULATION (p) OR TOTAL UNITS
	*NOTE: LAYOUT IS SCHEMATIC O DETAILED DESIGN STAGE.	NLY, DETAILS TO BE PROVIDED AT
		30 CENTURIAN DRIVE, SUITE 100 MARKHAM, ONTARIO L3R 8B8 TEL: (905) 475-1900 FAX: (905) 475-8335
	SHINING F	IILL ESTATES
	COLLEC	TION INC.
		IILL ESTATES
	PHASE 3 - FS	SSR (AURORA)
L		RY SANITARY AGE PLAN
_	DESIGNED BY: E.T.C.K.	CHECKED BY: S.E.K.
L	SCALE: 1:2000	DATE: SEPTEMBER 2022
-	PROJECT No:	FIGURE No:
	2183	3.2



	LEGEND:	
		T OF DEVELOPMENT
		POSED CONTOUR
		POSED ELEVATION POSED 3:1 MAX SLOPE
	1.00/	POSED ROAD GRADE
	PROI	POSED ROAD HIGH / LOW POINT
		TING REGULATORY FLOODLINE
	W/O wal	KOUT LOT
TAMMERY CREEK TRIBUTARY _		
× 264.27 EX	NOTE: ALL SINGLE RESIDENTIAL LOTS ARE SPL	IT DRAINING UNLESS OTHERWISE NOTED.
* 264.27 EX	*NOTE: LAYOUT IS SCHEMATIC ONLY, DETAILS	
263.00 EX	SCS consulting group Itd	TEL: (905) 475-1900 FAX: (905) 475-8335
2.2m HIGH NOISE FENCE		ECTION INC.
261.08 EX	SHINING	i HILL ESTATES
		FSSR (AURORA)
		RY GRADING PLAN
	DESIGNED BY: E.T.C.K. SCALE: 1:1000 PROJECT No:	CHECKED BY: S.E.K. DATE: SEPTEMBER 2022 FIGURE No:
	2183	FIGURE No: 5.1

File: P:\2183 Shining Hill Estates\Drawings\FSSR-Phase 3\Fig\Report Figures\2183P-FIGS-ROW-6.1-6.4.dwg - Revised by <RCORTEZ> : Thu, Sep 01 2022 - 10:30am

STREET LINE		
WATER SERVICE BOX		
	D INTERSECTIC	
PROJECT No:	FIGURE No:	5.1


*NOTE: LAYOUT IS SCHEMATIC ONLY, DETAILS TO BE PROVIDED AT DETAILED DESIGN STAGE.

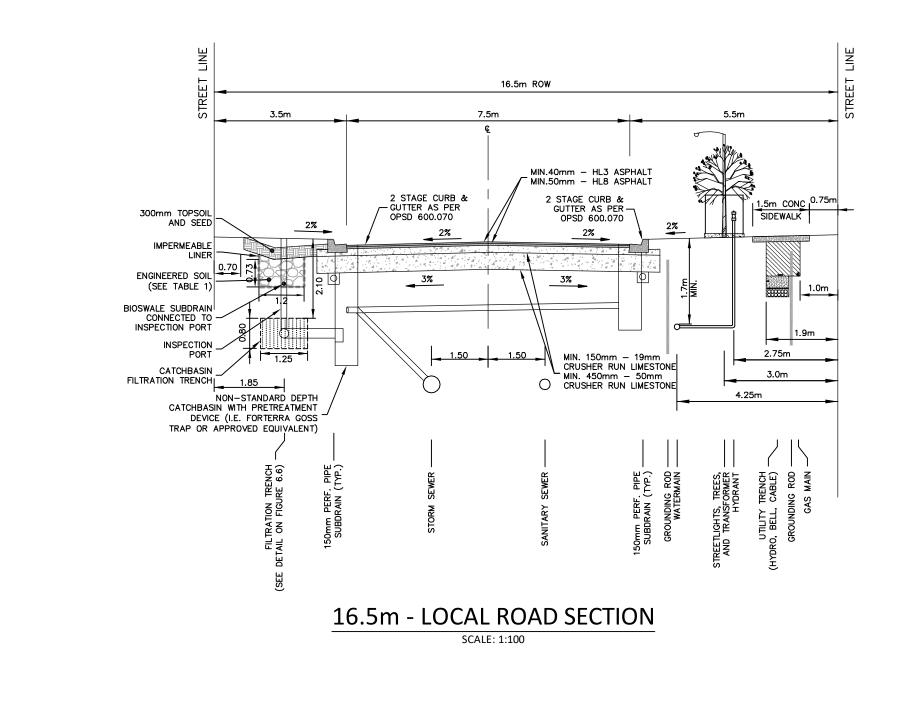
SHINING HILL ESTATES SHINING HILL ESTATES **LEGEND**: PHASE 3 - FSSR (AURORA) COLLECTION INC. 30 CENTURIAN DRIVE, SUITE 100 DESIGNED BY: E.T.C.K. CHECKED BY: S.E.K. MARKHAM, ONTARIO L3R 8B8 **SCS** consulting group Itd TEL: (905) 475-1900 FAX: (905) 475-8335 SCALE: 1:1000 DATE:

File: P:\2183 Shining Hill Estates\Drawings\FSSR-Phase 3\Fig\Report Figures\2183P-FIGS-ROW-6.1-6.4.dwg - Revised by <RCORTEZ> : Thu, Sep 01 2022 - 10:30am

SEPTEMBER 2022

18.0m LOCAL ROAD **SECTION** PROJECT No: FIGURE No: 2183 6.2

SHINING HILL ESTATES SHINING HILL ESTATES **LEGEND**: PHASE 3 - FSSR (AURORA) COLLECTION INC. PROJECT No: 30 CENTURIAN DRIVE, SUITE 100 DESIGNED BY: E.T.C.K. CHECKED BY: S.E.K. MARKHAM, ONTARIO L3R 8B8 **SCS** consulting group Itd TEL: (905) 475-1900 FAX: (905) 475-8335 SEPTEMBER 2022 SCALE: 1:1000 DATE:


File: P:\2183 Shining Hill Estates\Drawings\FSSR-Phase 3\Fig\Report Figures\2183P-FIGS-ROW-6.1-6.4.dwg - Revised by <RCORTEZ> : Thu, Sep 01 2022 - 10:33am

15.0m LOCAL ROAD SECTION

FIGURE No:

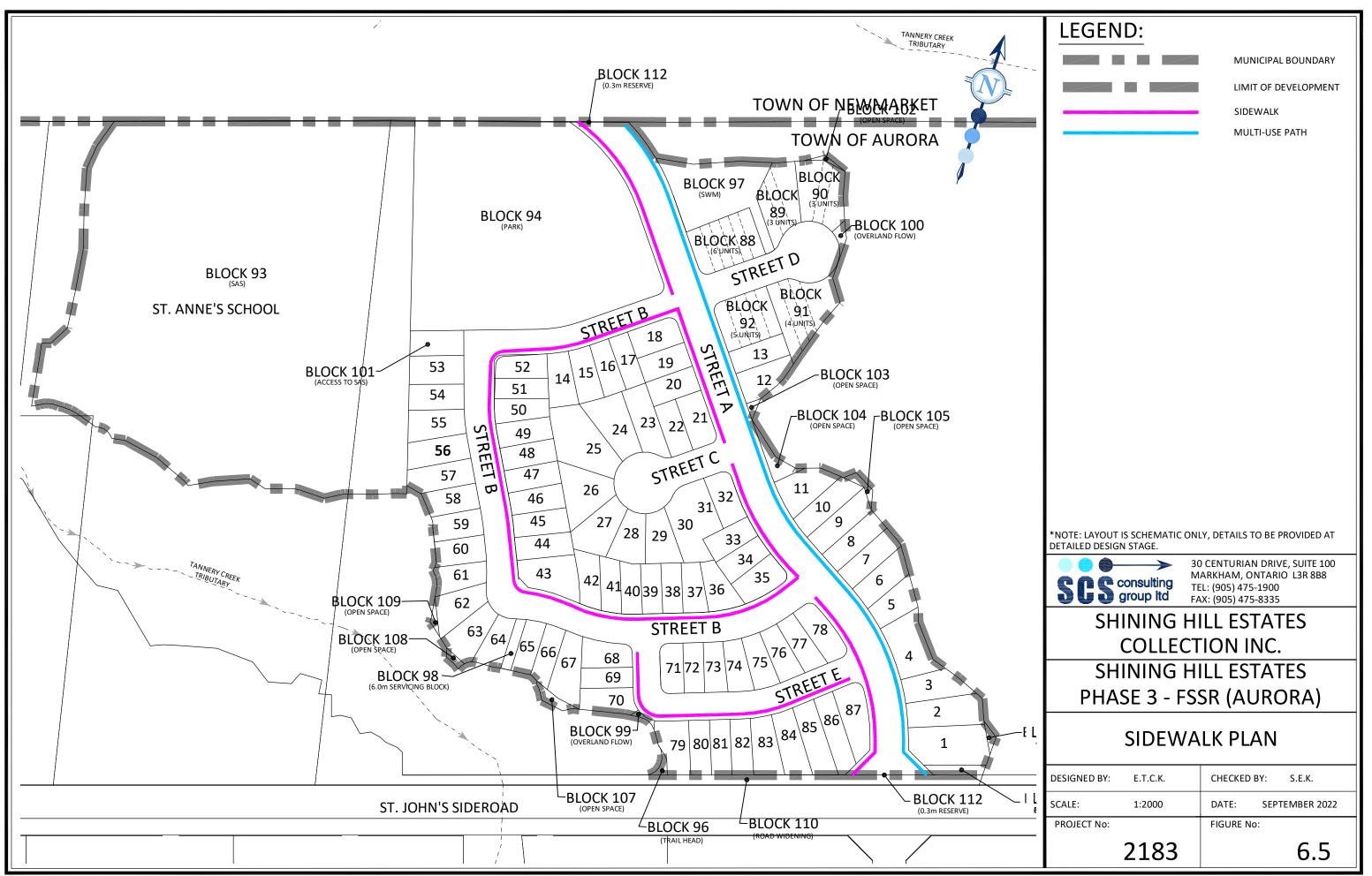
2183

6.3

*NOTE: LAYOUT IS SCHEMATIC ONLY, DETAILS TO BE PROVIDED AT DETAILED DESIGN STAGE.

SHINING HILL ESTATES SHINING HILL ESTATES **LEGEND:** PHASE 3 - FSSR (AURORA) COLLECTION INC. 30 CENTURIAN DRIVE, SUITE 100 DESIGNED BY: E.T.C.K. CHECKED BY: S.E.K. MARKHAM, ONTARIO L3R 8B8 **SCS** consulting group Itd TEL: (905) 475-1900 FAX: (905) 475-8335 SEPTEMBER 2022 SCALE: 1:1000 DATE:

File: P:\2183 Shining Hill Estates\Drawings\FSSR-Phase 3\Fig\Report Figures\2183P-FIGS-ROW-6.1-6.4.dwg - Revised by <RCORTEZ> : Thu, Sep 01 2022 - 10:33am


16.5m LOCAL ROAD SECTION

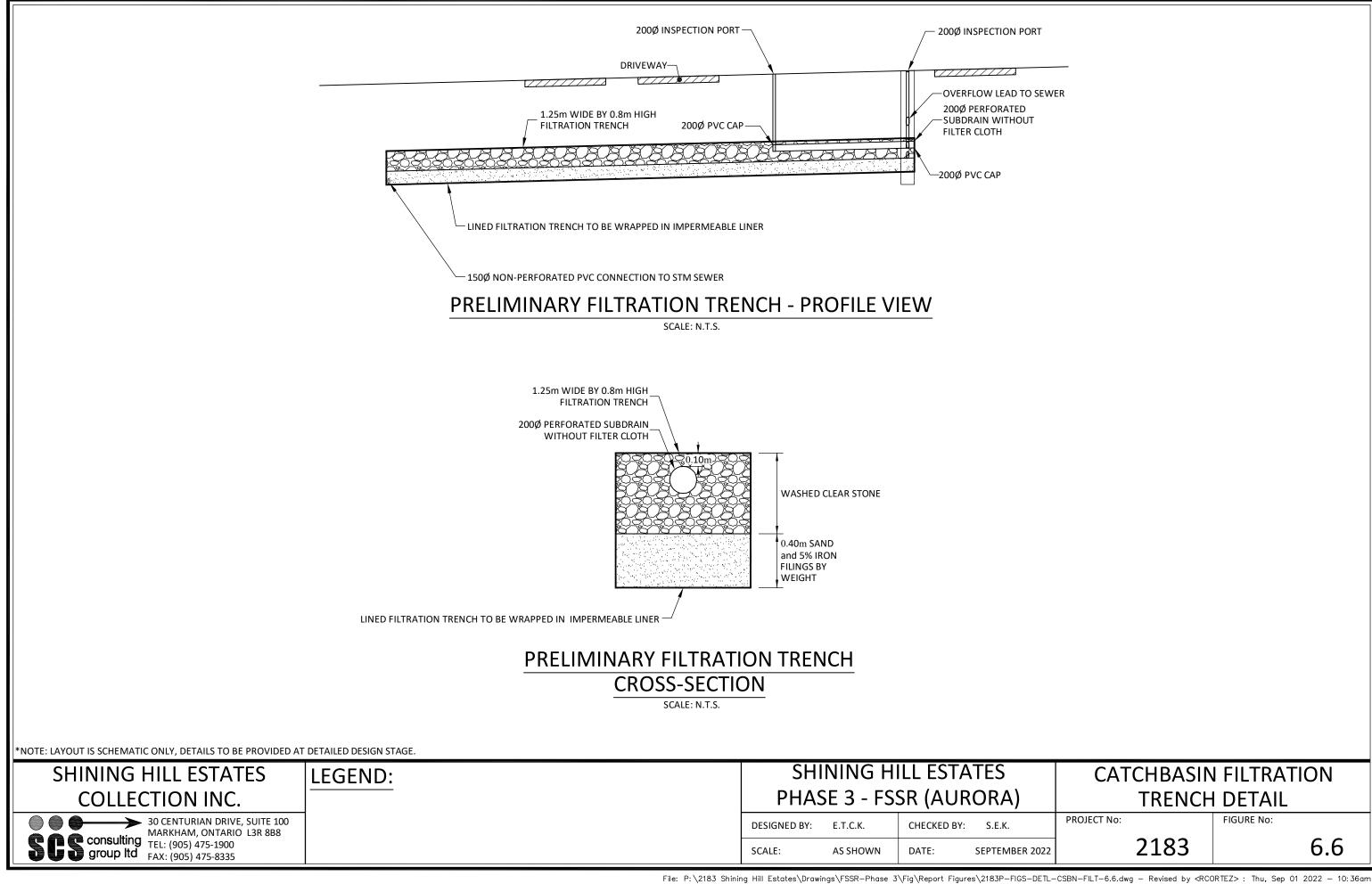
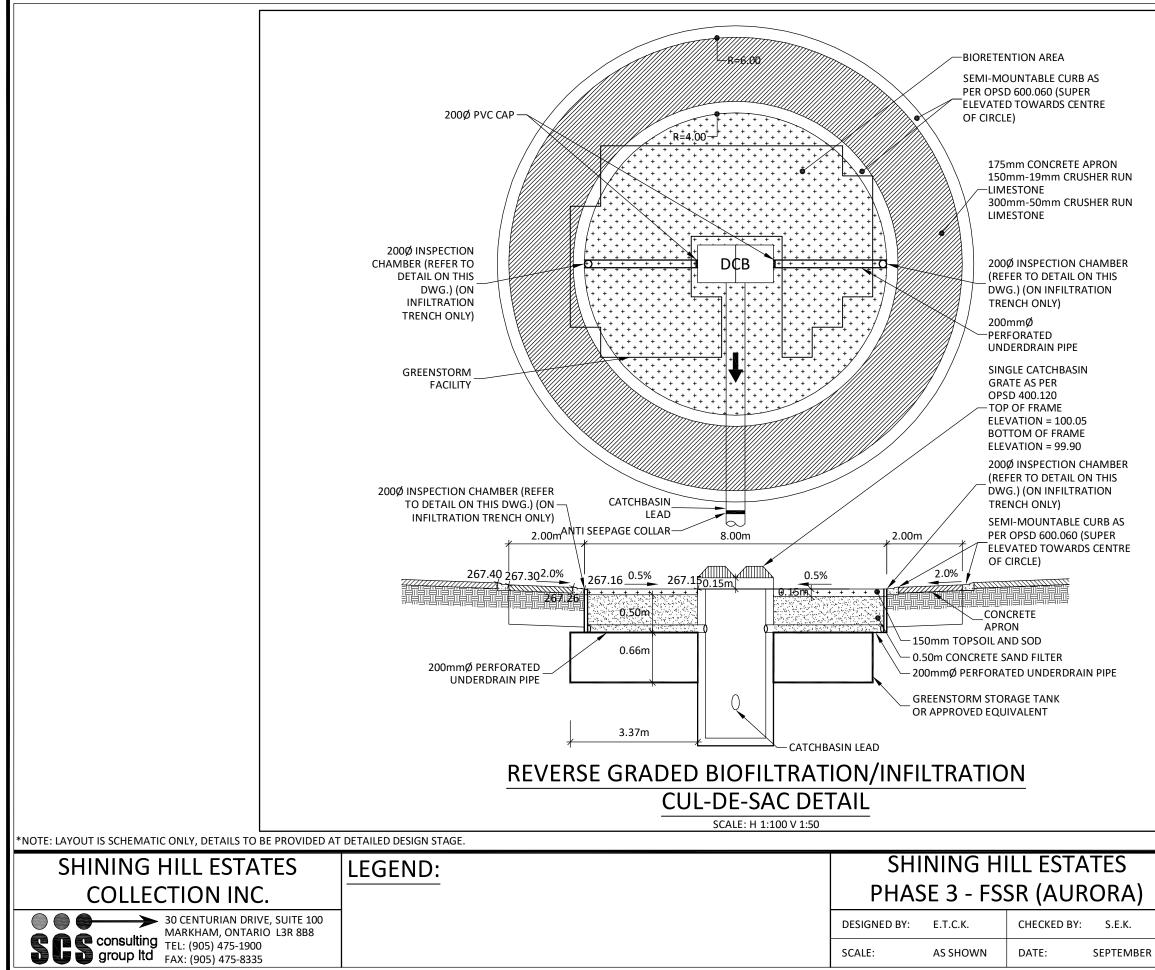
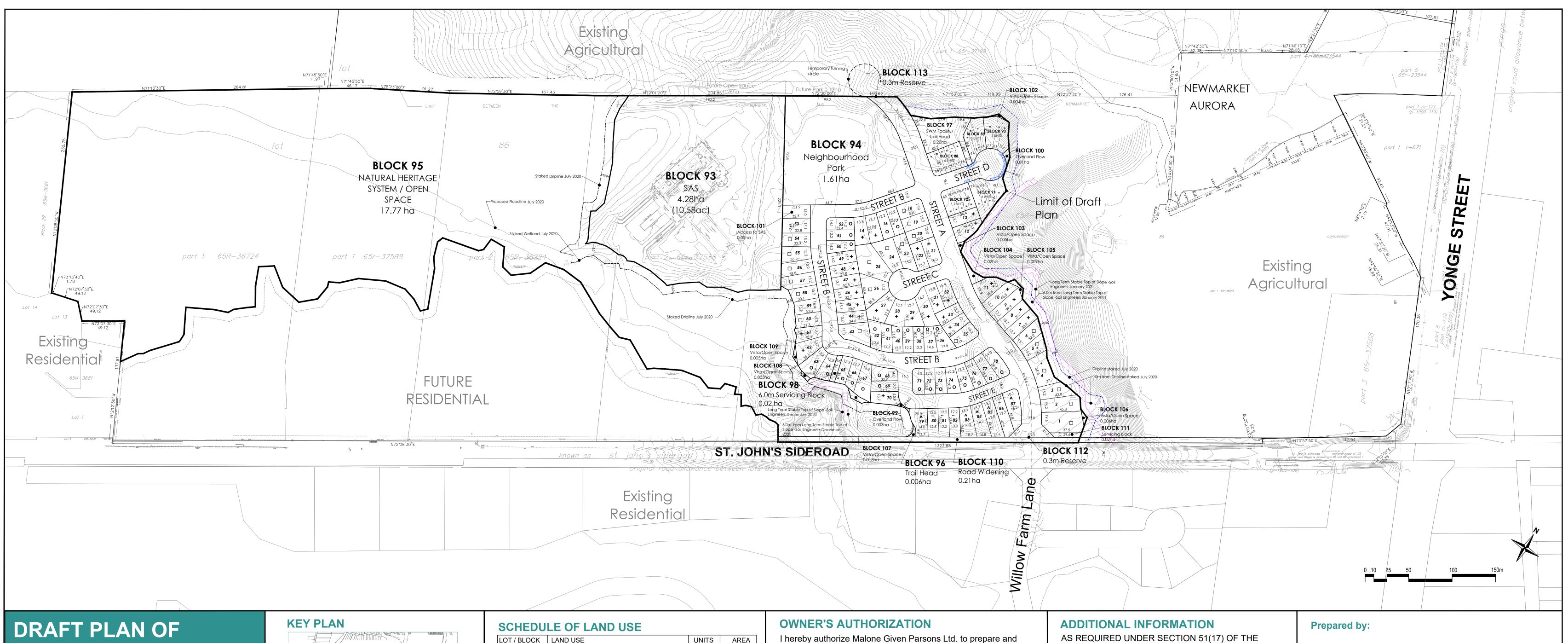

PROJECT No:

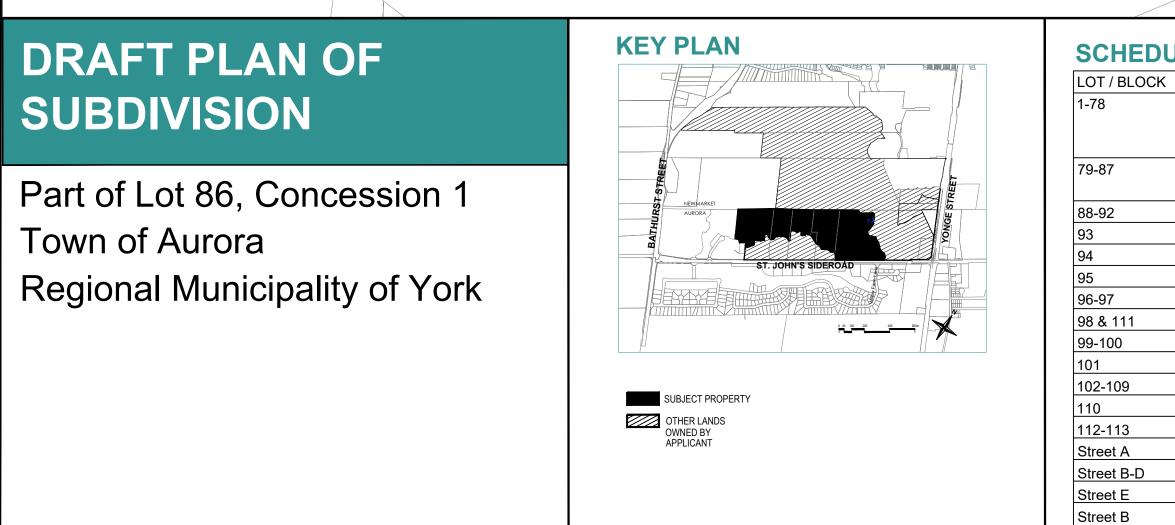
FIGURE No:


2183

6.4

	CATCHBASIN FILTRATION TRENCH DETAIL		
	PROJECT No:	FIGURE No:	
2022	2183	6.6	




	BIOS		NFILTRAT	ON
	PROJECT No:	DET	AIL FIGURE No:	
2022		2183		6.7
FIGS-[DETL-SWAL-6.7.dwg	- Revised by <rcc< td=""><td>DRTEZ> : Thu, Sep 01</td><td>2022 — 10:38am</td></rcc<>	DRTEZ> : Thu, Sep 01	2022 — 10:38am

APPENDIX A

DRAFT PLAN OF SUBDIVISION

TOTAL

JLE OF LAND USE		
LAND USE	UNITS	AREA
Single Detached Min. 15.24m	23	1.46
Single Detached Min. 13.70m +	28	1.43
Single Detached Min. 12.20m 0	27	1.18
Lane Access Single Detached Min. 13.70m ^	5	0.30
Lane Access Single Detached Min. 12.20m ~	4	0.18
Townhouses Min. 6.1m =	21	0.54
Saint Anne's School		4.28
Neighbourhood Park		1.61
Natural Heritage / Open Space		17.77
SWM / Trailhead		0.21
Servicing Blocks		0.04
Overland Flow		0.01
Access to Saint Anne's School		0.05
Vista's / Open Space		0.07
Road Widening		0.21
0.3m Reserves		0.01
23.0m Right of Way 436m		1.02
18.0m Right of Way 490m		0.96
16.5m Right of Way 165m		0.27
15.0m Right of Way 160m		0.19
	108	31.79

SURVEYOR'S CERTIFICATE

I hereby authorize Malone Given Parsons Ltd. to prepare and submit this Draft Plan of Subdivision to the Town of Aurora.

I hereby certify that the boundaries of the lands to be subdivided

and their relationship to the adjacent lands are correctly shown.

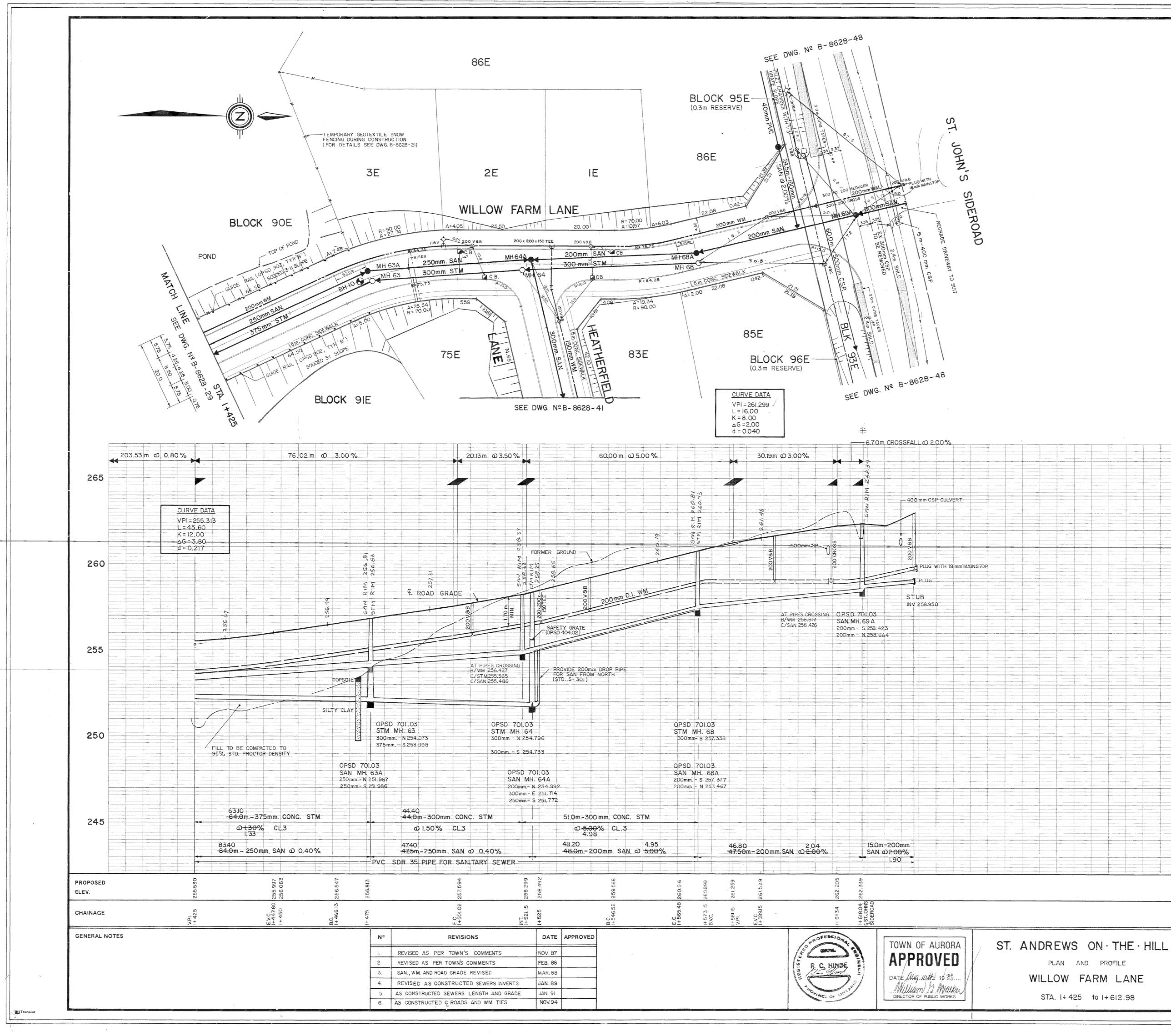
See Original Angelo DeGasperis

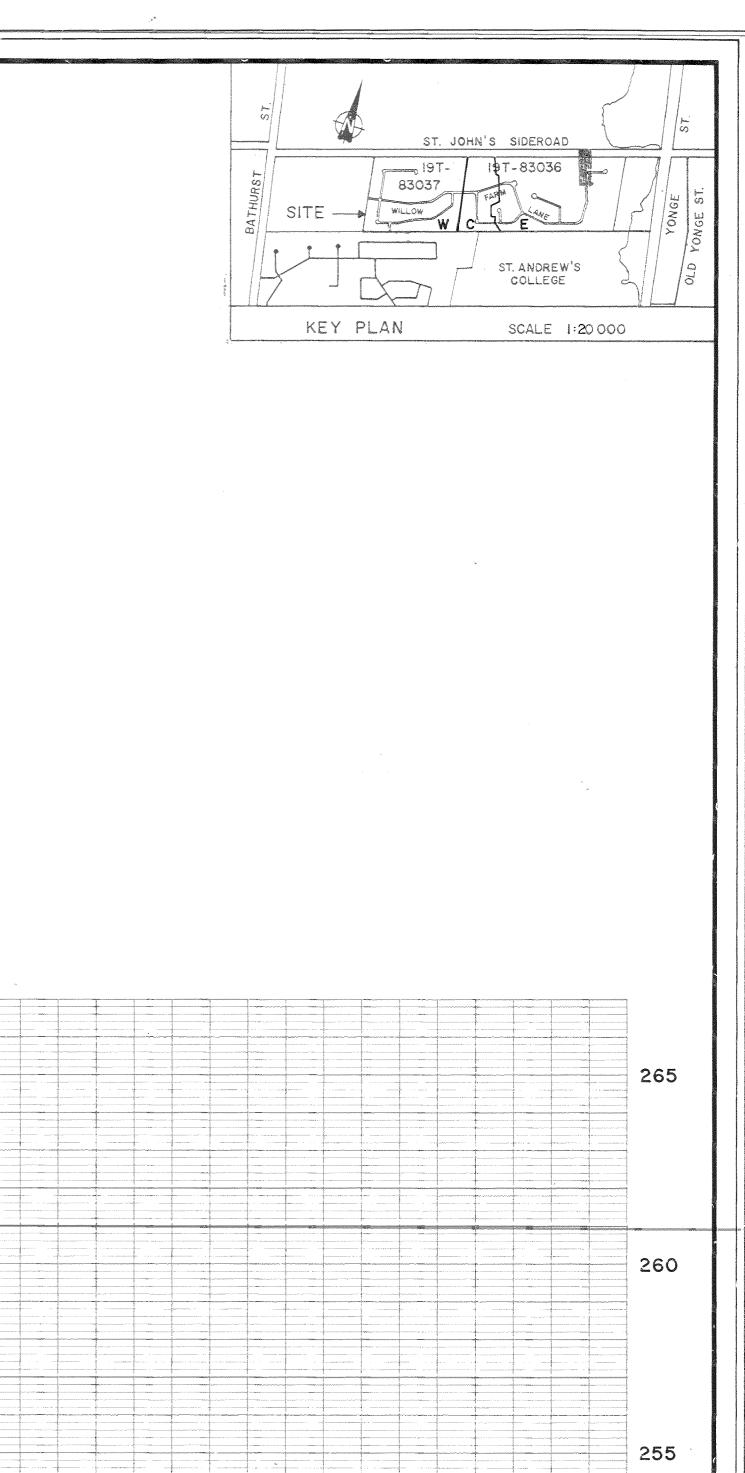
See Original Date

PLANNING ACT, CHAPTER P.13(R.S.O. 1990). (a),(e),(f),(g),(j),(l) - As shown of the Draft Plan. (b),(c) - As shown on the Draft and Key Plan. (d) - Land to be used in accordance with the Schedule of Land Use. (i) - Soil is clay loam and sandy loam. (h),(k) - Full municipal services to be provided.

See Original Neil A. LeGrow See Original Date

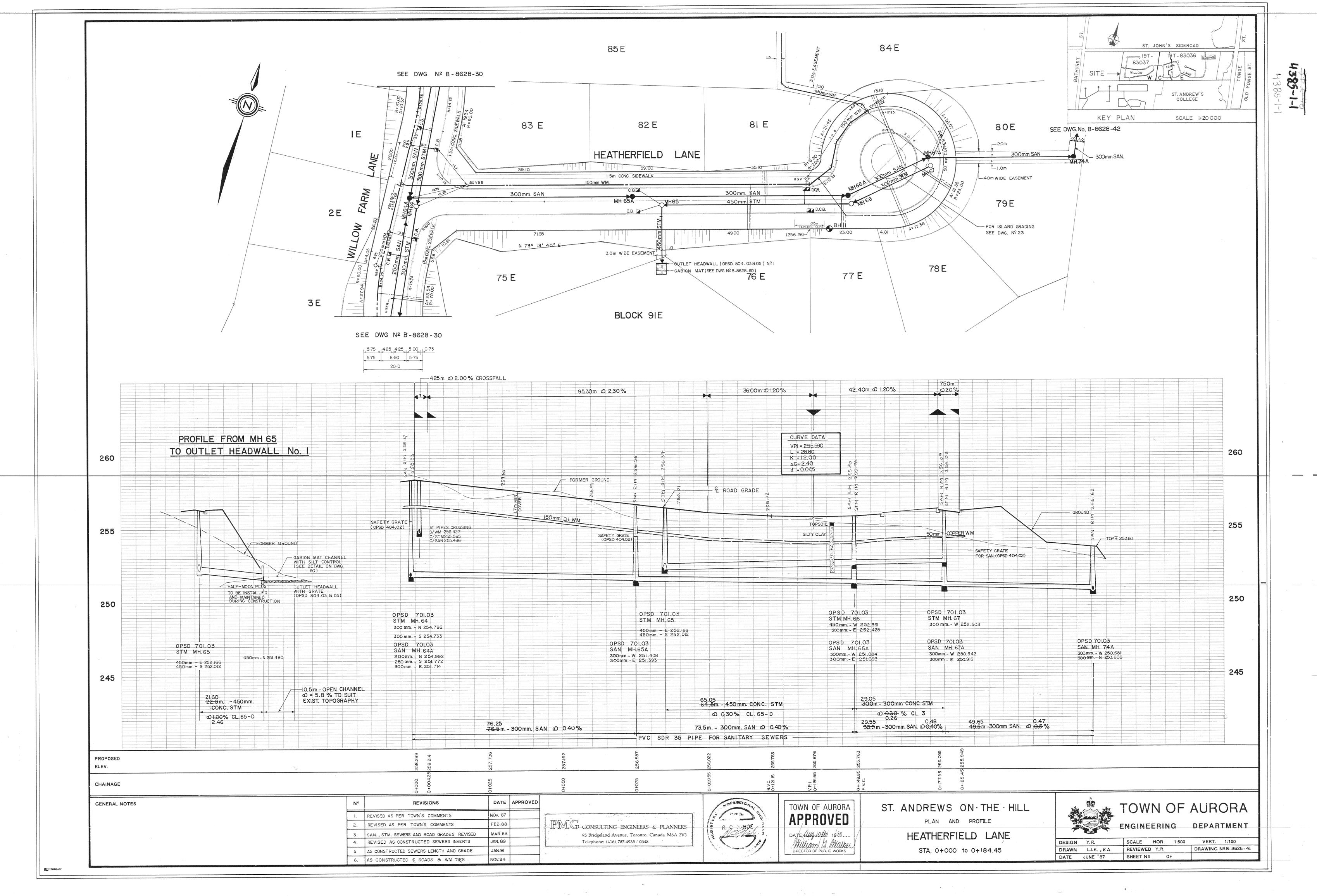
140 Renfrew Drive, Suite 201 Markham, Ontario, L3R 6B3 Tel: (905) 513-0170 www.mgp.ca

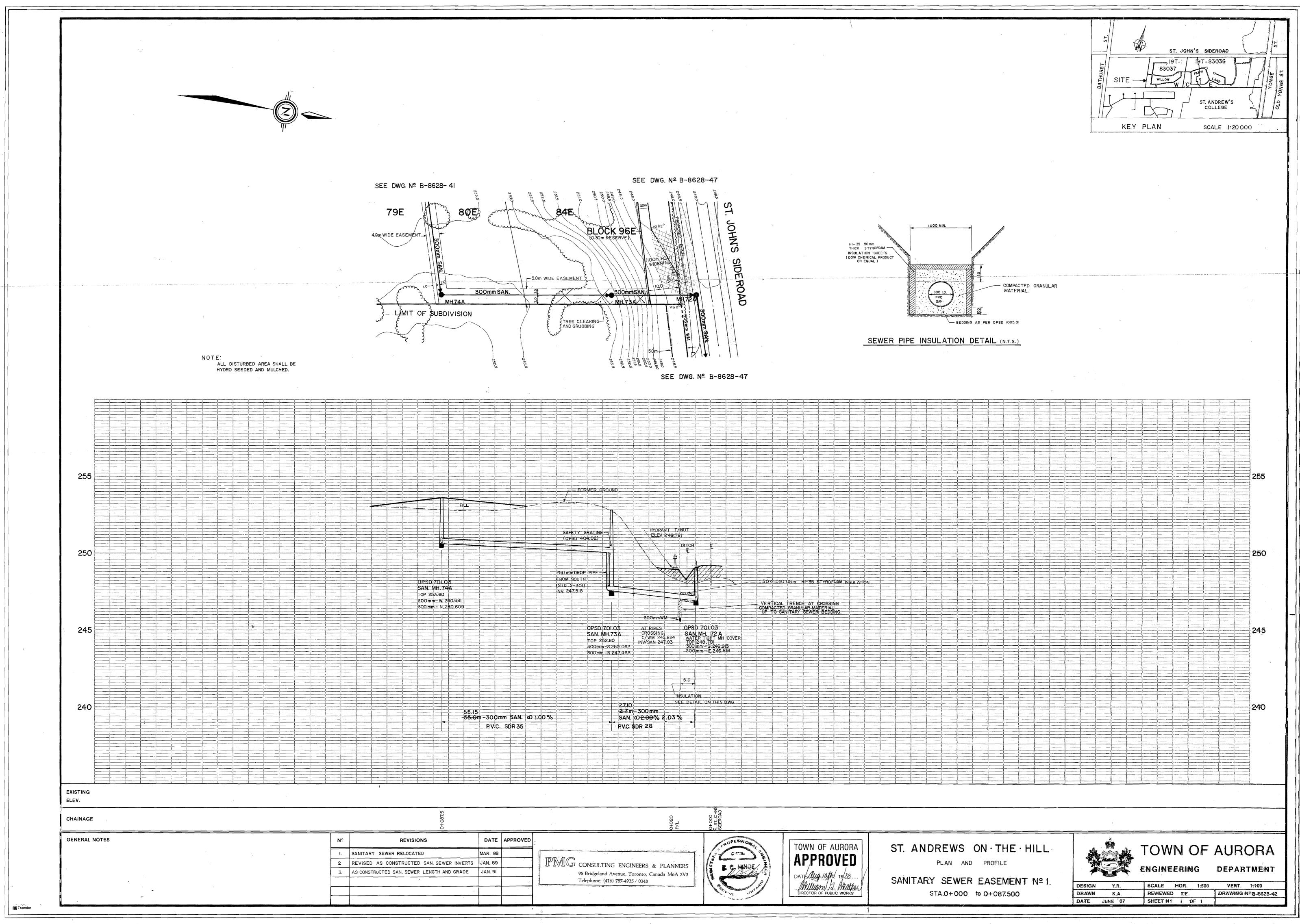

Prepared for: SHINING HILL ESTATES COLLECTION INC.


Date: March 8, 2021		Project No.: 15-2374	
Date	Revision	•	Ву
Oct 7/21	Revise the plan according to Town's comments		DR
Nov 1/21	Add servicing block and temp	orary turning circle	DR

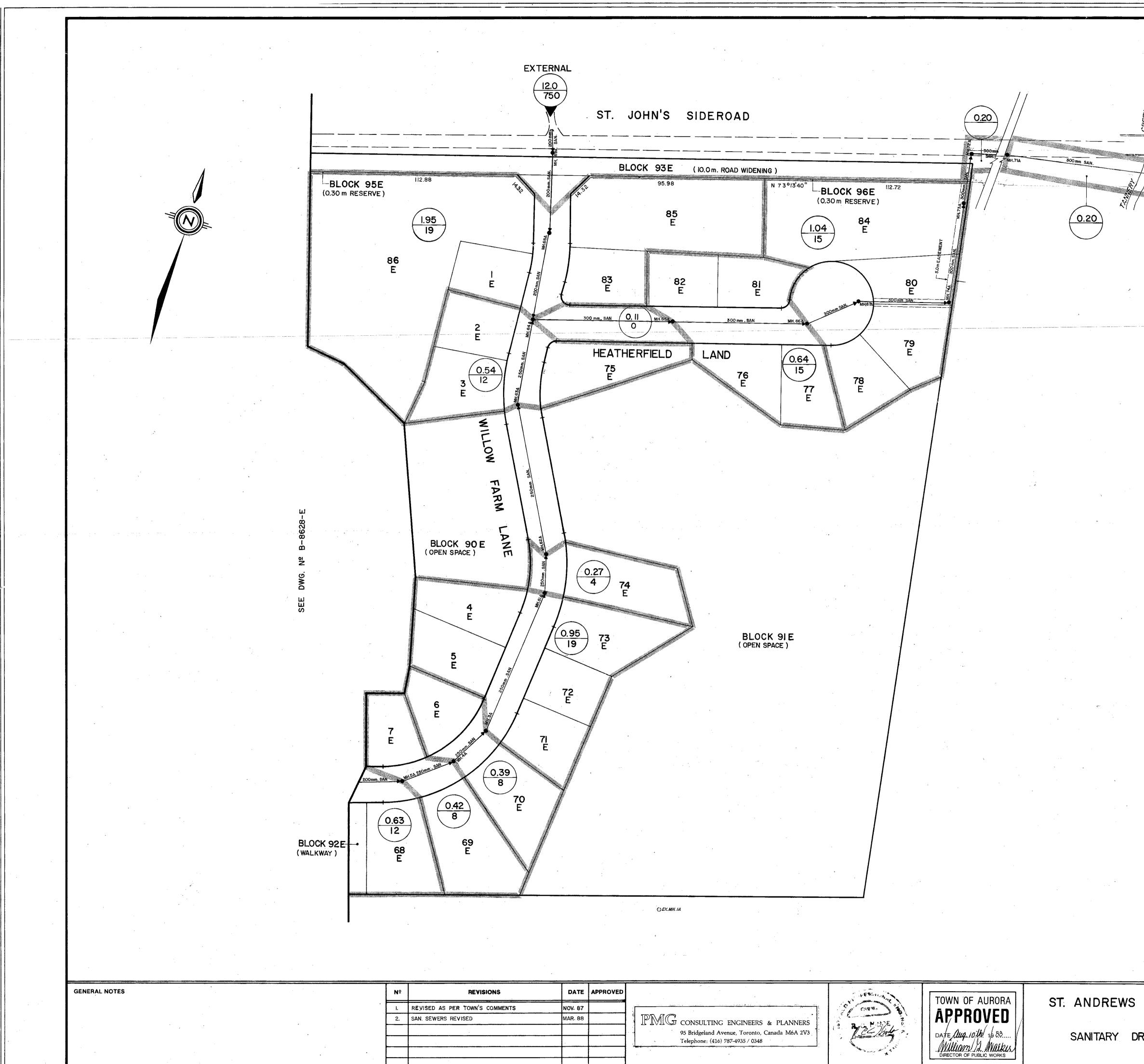
APPENDIX B1

BACKGROUND DRAWINGS

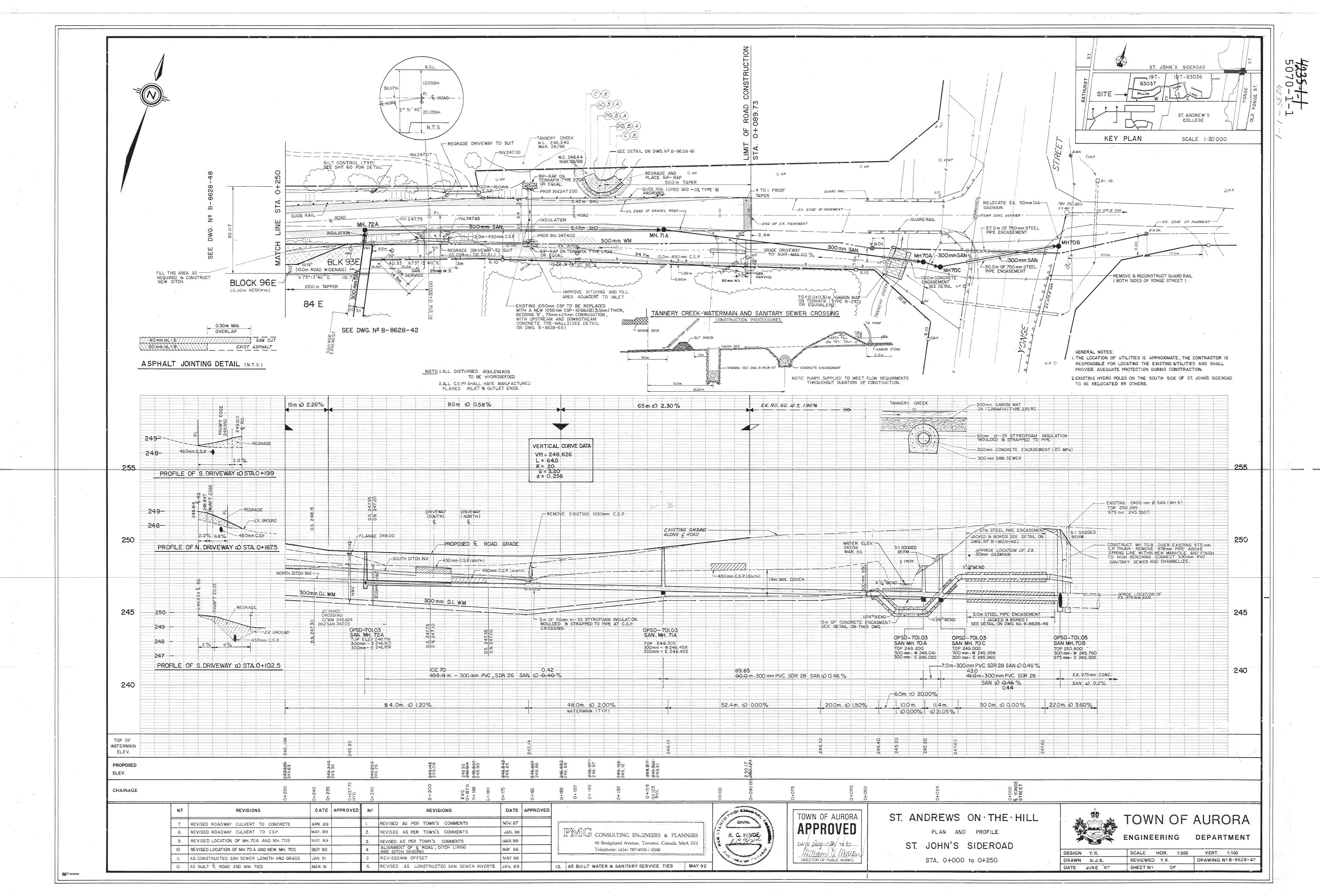


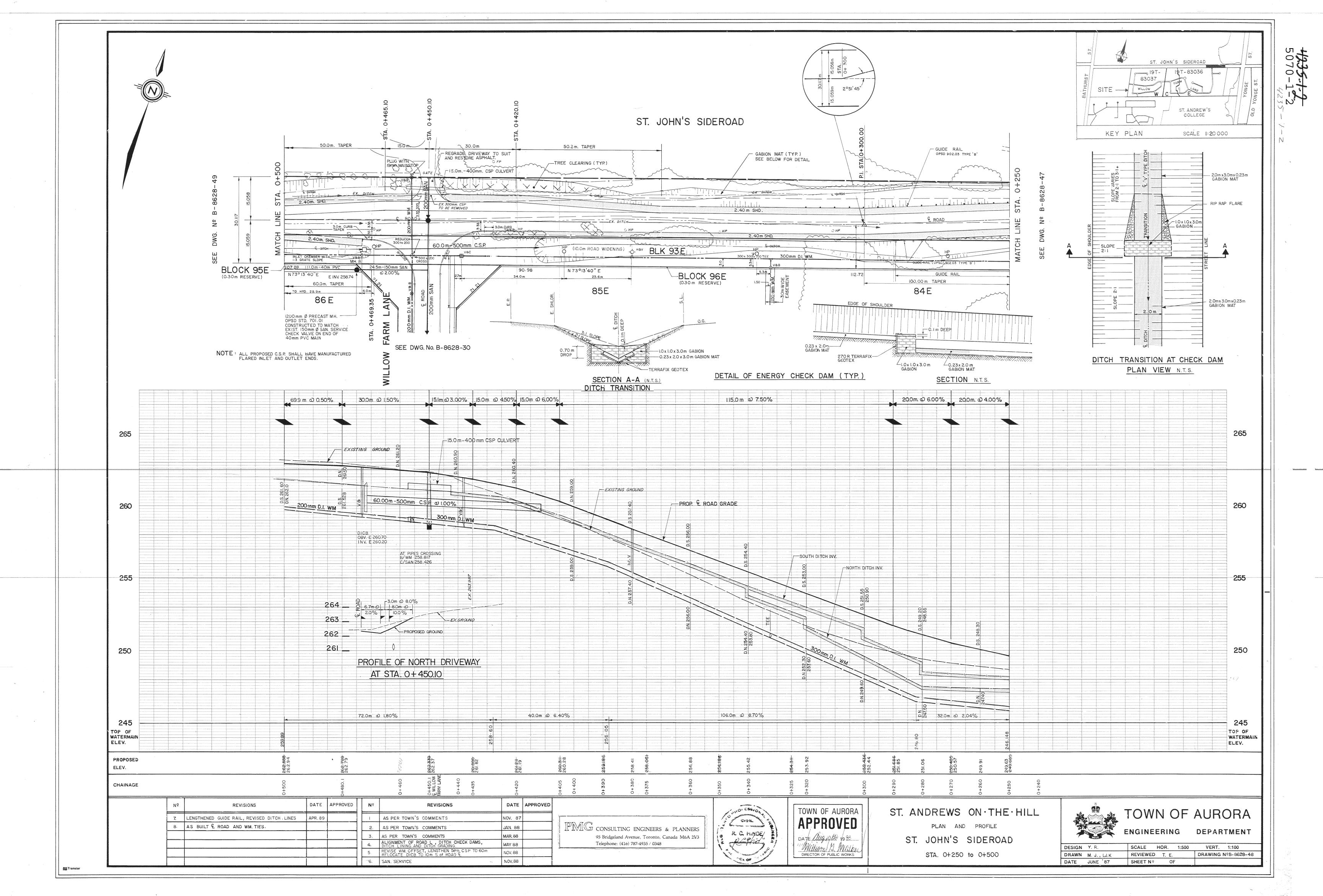

245 TOWN OF AURORA PLAN AND PROFILE ENGINEERING DEPARTMENT WILLOW FARM LANE SCALE HOR. 1:500 DESIGN Y.R. VERT. 1:100 DRAWN D.K., L.J.K. STA. 1+425 to 1+612.98 REVIEWED T.E.

SHEET Nº 7 OF 7 DATE JUNE '87


DRAWING Nº B-8628-30

250




JAN. 89 JAN. 91 JAN. 91 JAN. 91 DATE AUG. 10th. 1988 Telephone: (416) 787-4935 / 0348 PLAN A SANITARY SEWE			01050 P/L	C C C C C C C C C C C C C C C C C C C	<u>. </u>	
	MAR. 88 JAN. 89	APPROVED	95 Bridgeland Avenue, Toronto, Canada M6A 2V3	E CHNOE	APPROVED DATE Aug. 19th 1988	ST. ANDREWS PLAN A SANITARY SEWE STA.0+00

All Transla

ST. JOHN'S SIDEROAD ST. ANDREW'S COLLEGE EX 975 mm KEY PLAN SCALE 1:20 000 MH.70A POPULATION BASED ON 3.8 PERSONS PER UNIT. LEGEND AREA IN HECTARES POPULATION <u>|.38</u> 30 ST. ANDREWS ON THE HILL TOWN OF AURORA ENGINEERING DEPARTMENT SANITARY DRAINAGE PLAN DESIGN Y.R. DRAWN R.,Z., LJ.K. DATE AUG. '87 SCALE I:1000 REVIEWED Y.R. DRAWING Nº B-8628-F SHEET Nº 3 OF 3

Table 1. Description of Berger (2010) Land Uses in the Lake Simcoe Watershed

Berger (2010) Land Use	Included LSRCA Land Use(s)	Land Use Description	
Hay / Pasture	Non-intensive Agriculture	Hay and pasture fields, including the related agricultural buildings such as barns, silos and the farm residence. Fields are dominated with herbaceous vegetation and grasses with an understory of similar material in a state of decay. Weedy hay and/or pasture covers more than 50% of the area.	
Crop Land	Intensive Agriculture	Cultivated row crops, including the related agricultural buildings (e.g., barns, silos and the farm residence), producing crops in varying degrees (e.g., corn and wheat) and includes specialty agriculture (i.e., orchards, market gardens, Christmas tree plantations and nurseries).	
Sod Farm /	Sod Farm	Sod farms.	
Golf Course	Golf Course	Golf courses, including lane ways, but not the isolated woodlots within, unless the area of the woodlots is < 0.5 ha.	
	Estate Residential	A home including the manicured area around the home and driveway, within a natural heritage feature. The natural heritage feature is not included in the Estate Residential land use classification.	
	Manicured Open Space	Cleared areas with a low density of trees, including lawns and landscaping. Land use is dominated by gardens, parkland and lawns, e.g., cemeteries, urban parks, ski hills and residential/industrial open space with a minimum size of 2 ha.	
Low Intensity	Rail	Rail lines and the associated cleared adjacent areas.	
Development	Rural Development	Properties not directly associated with an agricultural operation and that contain residential, commercial or other buildings, as well as a manicured open space, within a natural heritage or agricultural feature (e.g., estate residential or service station). On developed portions, these properties are under intensive use. Based on canopy cover, these areas will often appear as Cultural Savannah or Cultural Woodland in aerial photographs or satellite imagery. However, the presence of buildings and manicured lands identify the properties as Rural Development.	
High Intensity	Commercial	Impervious properties that contain a building and an adjacent parking lot (e.g., shopping and strip malls, power centres, scrap yards). Excludes green land areas such as parks or river valleys.	
Development ¹ (Commercial /Industrial)	Industrial	Impervious properties that are not commercial and include industrial operations e.g., factories, manufacturing facilities, processing facilities, bulk fuel storage. Excludes green land areas such as parks or river valleys.	
, inclusion (all)	Institutional	Schools, hospitals and other institutional structures. May include large storm water management ponds. Excludes green land areas such as parks or river valleys.	
High Intensity Development ¹ (Residential)	Urban	Urban related land uses including continuous ribbon development. Interpreted from aerial photographs or satellite imagery by many roof tops and/or groupings of 5 or more residential properties with a combined area of ≥ 2 ha. Residential properties include single and semi-detached dwellings, apartment buildings and associated out-buildings, driveways and parking lots. Excludes green land areas such as	
	Active Aggregate	parks or river valleys. Areas that are currently being excavated or have recently been excavated. Identified by pits, extraction machinery, unvegetated landscape and/or piles of extracted materials. Active aggregate areas may contain open water.	
Quarry	Inactive Aggregate	Former aggregate sites that have been recently revegetated; vegetation is established and growing. Depending on their characteristics, in aerial photographs or satellite imagery, these properties may appear to be comparable to an abandoned field or forming wetland.	
Road	Road	Unpaved roads, including the shoulder. Does not include driveways.	

🛞 Hutchinson Environmental Sciences Ltd.

APPENDIX B2

RAINSCAPING MEETING MINUTES

MEETING MINUTES

 $\mathbf{>}$

File #:

Date:

2183 January 5, 2021

Project:	Shining Hill Estates	
Purpose:	Rainscaping Design Charrett	e
Date/Time of Meeting:	December 15, 2020 – 1:00 pm to 3:30 pm	
Location:	SCS hosted Zoom	
Next Meeting:	TBD	
Recipient(s):		Email:

	Recipient(s).	Linan.
Attendees:	Rob Baldwin, LSRCA	r.baldwin@lsrca.on.ca
	Melinda Bessey, LSRCA	m.bessey@lsrca.on.ca
	Phil Thase, LSRCA	p.thase@lsrca.on.ca
	Dave Ruggle, LSRCA	d.ruggle@lsrca.on.ca
	Jessica Chan, LSRCA	j.chan@lsrca.on.ca
	Shelly Cuddy, LSRCA	s.cuddy@lsrca.on.ca
	Bill Butler, Aurora	bbutler@aurora.ca
	Glen McArthur, Aurora	gmcArthur@aurora.ca
	Rosanna Punit, Aurora	rpunit@aurora.ca
	Brian Jakovina, Aurora	bjakovina@aurora.ca
	Peter Noehammer, Newmarket	pnoehammer@newmarket.ca
	Jason Unger, Newmarket	junger@newmarket.ca
	Craig Schritt, Newmarket	cschritt@newmarket.ca
	Meghan White, Newmarket	mwhite@newmarket.ca
	Adrian Cammaert, Newmarket	acammaert@newmarket.ca
	Jeff Bond, Newmarket	jbond@newmarket.ca
	Paul Bailey, Shining Hill Estates Collection Inc.	paul@bazil.ca
	Brian Henshaw, Beacon	bhenshaw@beaconenviro.com
	Chana Steinberg, Beacon	csteinberg@beaconenviro.com
	Don Given, MGP	dgiven@mgp.ca
	Lincoln Lo, MGP	<u>llo@mgp.ca</u>
	Diane Russelle, MGP	drusselle@mgp.ca
	Rohan Sovig, MGP	rsovig@mgp.ca
	Allyssa Hrynyk, MGP	<u>ahrynyk@mgp.ca</u>
	Steve Schaefer, SCS	sschaefer@scsconsultinggroup.com

	Sarah Kurtz, SCS	skurtz@scsconsultinggroup.com
	Erich Knechtel, SCS	eknechtel@scsconsultinggroup.com
	Ben O'Neill, SCS	boneill@scsconsultinggroup.com
Absentees:	Rachel Prudhomme, Newmarket	rprudhomme@newmarket.ca
	Sepideh Majdi, Newmarket	smajdi@newmarket.ca
	Victoria Klyuev, Newmarket	vklyuev@newmarket.ca
	Mark Agnoletto, Newmarket	magnoletto@newmarket.ca
	Gordon Macmillan, Newmarket	gmacmillan@newmarket.ca
	David Waters, Aurora	dwaters@aurora.ca
	Gary Greidanus, Aurora	ggreidanus@aurora.ca
	Jim Tree, Aurora	jtree@aurora.ca
cc:	Mumta Mistry, Soil Engineers Ltd.	mumta@soilengineersltd.com
	Joel Gopaul, Golder	joel_gopaul2@golder.com
	Chris Kozuskanich, Golder	chris_kozuskanich@golder.com
The fel	lowing is considered to be a true and accurate reas	d of the items discussed Any emens on

The following is considered to be a true and accurate record of the items discussed. Any errors or omissions in these minutes should be provided in writing to the author immediately.

The purpose of this meeting was to establish a suite of LID and SWM solutions in consultation with Aurora, Newmarket, and the LSRCA, for application in the Shining Hill Estates Phase 3 functional servicing design.

Item	. <u>.</u>		Action:
1.0	Rair	ainscaping Charrette Presentation	
	1.1	Planning Status	
		 St. Anne's School (Aurora) occupancy targeted for September 2022 Phase 3 Newmarket requires Official Plan amendment and urban zoning designation. Secondary plan level reports required prior to draft plan approval. 	Info
	1.2	Geotechnical Investigation	
		• Long term stable top of slope (LTSTOS) generally follows physical top of slope except in localized area in south east of Phase 3 (Aurora).	
		 LTSTOS still to be evaluated near SAS driveway and all of Phase 3 within Newmarket. 	LC
		 Soils generally suitable for surface retention, clay liner required in sandy areas. 	Info
		 Varved clays encountered in many areas having a low estimated percolation rate. 	

<u>tem:</u>			Action:
1.3	Hydro	ogeology (Golder)	
	•→	Municipal wells in Aurora near the site (southeast corner of Yonge Street and St. John's Sideroad) tap into the deep Thorncliffe aquifer. Impacts to water quality from the proposed development are expected to be minimal because of the depth of the wells, the low permeability clay, and the groundwater gradient which generally discharges to the Tannery Creek tributaries within the site. Groundwater depth ranges from 2 m to 6.5 m, most shallow towards	Info
		the east. Measured in December 2020, spring monitoring required to establish seasonal high elevations.	
	•->	WHPA-Q1 requires matching pre-development recharge.	
1.4	Ecolo	gy and Constraints	
	•->	Recommending minimum vegetation protection zone (MVPZ) of: 10 m to dripline/woodland, 30 m to watercourse, and 15 m to wetlands.	
	•->	A reduced MVPZ is recommended adjacent to the existing St. Anne's School driveway access. It is 3 m to the woodland/dripline and 6 m to the wetland. This is consistent with the existing condition.	Info
	•->	Regulatory floodline generally not the limiting constraint due to deep valley corridors.	
	•	Existing drainage boundaries map is attached.	
1.5	Deve	lopment Concept and Preliminary Engineering	
	•->	Steep road connections expected to St. John's and Bathurst.	
	•->	Expecting road grades between 0.7% and 5%, and lot grades between 2% and 5%.	Info
	•>	Sloping or walls could be required at some locations around the site perimeter to make up grade.	
1.6	Storm	nwater Management	
	↔	LSRCA's guidelines are the principal SWM criteria.	
	•>	Constraints are low permeability soils, steep topography for grading, and shallow to moderate groundwater depth.	Info
	↔	Opportunities are: underground storage in park blocks, infiltration/filtration in boulevard LIDs, steep topography for storm outfall flexibility.	into

Item	tem:			<u>Action:</u>
2.0	Municipal Feedback on LIDs and SWM - Aurora			
	2.1	Biosv	vales and Grassed Swales (in boulevard or elsewhere)	
		•->	Aurora has some experience maintaining grassed bioswales and grassed swales that have worked well. Has experienced some issues with sediment build up at curb cut inlets and short circuiting.	
		♠→	Aurora open to implementing bioswales/grassed swales in boulevards in the future. Notes that more focus should be given to operations and maintenance manuals, and protection during construction.	Info
		•	Driveways will limit these LIDs, but many single loaded roads in the plan present opportunities.	
	2.2	Perme	eable Pavement	
		•>	Aurora has had issues with clogging and short circuiting.	Info
	2.3	Catch	basin Infiltration/Exfiltration	
		•	Aurora currently operating and monitoring some of these systems. But only in a small number. No issues thus far.	
		•>	Unlikely to accept them under the road or hard surfaces.	
		↔	Not preferred relative to surface LIDs because easy visual inspection from the surface is not possible.	
		●→	LSRCA/SCS note there are design alternatives to improve ease of inspection and maintenance, such as inspection ports and cleanouts for flushing.	Info
		♦→	Access in the event of reconstruction is good when this LID is located under a pervious surface behind the curb line, and they are also at a shallower depth in this configuration.	

Project:Shining Hill EstatesPurpose:Rainscaping Design Charrette

File #: 2183 January 5, 2021 Page 5 of 7

Item	<u>:</u>			<u>Action:</u>
	2.4	Gener	ral/Other	
		●→ ●→	Town has concerns over yearly sediment load in catchbasins. It will be easier for the Town to accept LIDs if they are well protected during construction and ready to be certified immediately. Focus should be on managing impacts of sedimentation on Town operations.	
		●→	Aurora does not accept rain gardens on lots for municipal maintenance (i.e. easement and municipal maintenance agreement). SCS notes that privately owned ones can still contribute to water balance and phosphorous removal.	
		●→	LSRCA/SCS note possibility of super elevating roads draining to rain gardens on one side of the ROW. It was noted that Highland Gate utilized superelevated roads. Town noted that Operations may not be favourable to superelevated roads and that further discussions would be required.	Info
		•→	Aurora Development Engineering supports underground storage usage in parks, but noted that discussions with Parks is necessary (Brian Jakovina to confirm with Parks). Easy truck and maintenance access are key. Also supports this approach to optimize land use. It was noted that LSRCA is working with City of Barrie to utilize underground storage/infiltration below programmed parks extensively, which provide good truck access utilizing hard surfaces from the programmed parks.	
3.0	Mur	nicipal	Feedback on SWM and LIDs - Newmarket	
	3.1	Gener	ral	
		●→ ●→	Newmarket not excluding any LIDs or SWM methods at this stage. Town has ceased using sand for winter road maintenance which should make LID maintenance easier in the future.	Info
4.0	Desi	gn Cha	arrette (Aurora)	
	4.1	apartr	wner anticipates the Aurora medium density block will be a mid-rise nent-style building. There are opportunities for a variety of LIDs given his will be a private site plan.	Info
	4.2	long t	noted that minor building additions are expected on the SAS site in the term. MGP and Aurora to discuss greenspace access for the school. mmodation for increased impervious should be included in the SWM n.	Aurora/MGP
	4.3	Auroi	a prefers LIDs under grassed areas rather that under hard surfaces.	Info

Item	:		<u>Action:</u>
	4.4	Aurora noted that all LIDs on a lot must be privately owned. Aurora will not provide any maintenance for such LIDs. SCS noted that such LIDs can be used toward water balance and phosphorus removal credit. Developer obtains an ECA for the private lot LIDs, which are removed from the ECA upon transfer to the municipality.	Info
	4.5	Three outlets are expected for the Aurora lands. Likely superpipe to the southwest with outfall to the westerly Tannery Creek tributary; underground SWM in park with outfall to the northeast; and a superpipe connecting to St. John's Sideroad and discharging northeast to Tannery Creek.	Info
	4.6	Aurora noted limited experience with curb cuts relative to the amount sketched on the plan. Bioswales are viable, but curb cut inlets have been a source of maintenance issues. Suggested the developer/engineer explore mitigation measures such as wider inlets.	Info
5.0	Desi	gn Charrette (Newmarket)	
	5.1	The engineering preference for the northern most watercourse crossing is to align it south of the existing farm crossing. This alignment locates the SWM block in a lower area, and eliminates unnecessary bends in the road.	Info
	5.2	Newmarket noted the use of underground SWM infrastructure with park land above would have to be discussed at a later date. Newmarket is open to this idea if it uses land more wisely. Newmarket has experience with this approach in the Mosaik subdivision, and is learning from the ongoing maintenance of this SWM infrastructure.	Info
	5.3	LSRCA suggested mandating the school block provide on-site LID control.	Info
	5.4	LSRCA noted the restoration/trail block is a good location for compensation plantings for proposed crossing disturbances. Newmarket expressed interest in increasing woodland continuity using this block. MGP, Newmarket, LSRCA, Beacon to discuss further.	MGP Newmarket LSRCA Beacon
	5.5	Newmarket noted to consider boulevard swale depth at detailed design and that it does not inhibit grass cutting, or else it could lead to homeowner tampering.	Info
6.0	Desi	gn Charrette (General)	
	6.1	LSRCA noted opportunities for localized SWM treatment at end of the cul- de-sacs in the concept plan.	Info
	6.2	Many single loaded roads exist in the plan, and present opportunities for boulevard LIDs at the surface (e.g., bioswales).	Info

 \rightarrow

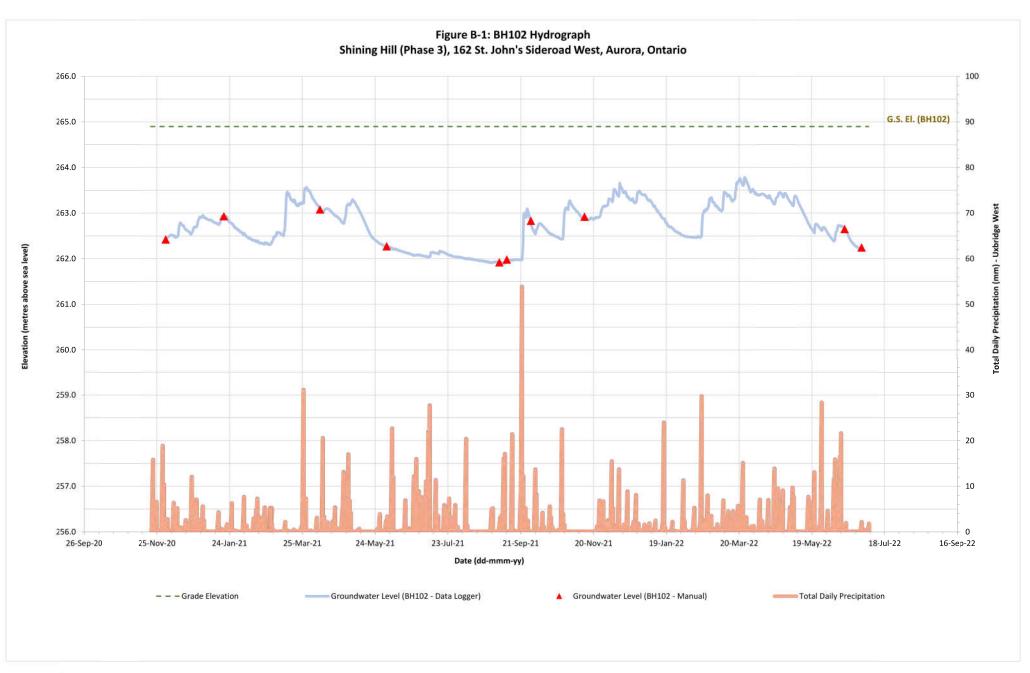
<u>Item:</u>		<u>Action:</u>
6.3	LSRCA noted a precedent for successful implementation of underground storage in parkland in Barrie. The City provided some level of parkland dedication. MGP wished to discuss further with Newmarket/Aurora on potential levels of parkland dedication with combined SWM. Current concept plan sets aside SWM blocks conservatively, size not assessed in detail.	MGP/ Newmarket/ Aurora
6.4	Site topography generally falls west to east. Therefore, west side of north/south laneways would be optimal for LIDs.	Info
6.5	Beacon noted that each of the three headwater drainage features will have to be assessed further and each will have their own management recommendations. LSRCA noted an assessment of allowable water quality to the features is required. It was noted that LIDs in the buffer areas present good opportunities for feature recharge.	Info
6.6	SWM blocks are conceptual in size at this stage.	Info
6.7	Newmarket noted an interest in increased use of soft landscaping in medium density blocks. MGP noted that mid-rise development is anticipated in these blocks per their preliminary plans. SCS noted that private plans allow for better use of open space for LIDs on private site plans, such as permeable paving products that would be avoided elsewhere in the subdivision.	Info
6.8	LSRCA noted that a 'post to pre' water balance approach is generally required for all features. A site wide water balance is also required. Each feature catchment will also require a water balance. LSRCA/Beacon/SCS/Golder to meet again once hydrogeology work is advanced to discuss specific requirements. Natural Heritage to be included as well.	Beacon LSRCA Golder SCS
6.9	LSRCA noted the approved Phase 1 (Newmarket) site implemented underground storage and a bioretention facility. LSRCA recognized that while treatment at source is the primary objective, constraints may necessitate conventional end of pipe approaches such as manufactured treatment devices. Does not expect that school board would accept a requirement for on-site LID.	Info

SCS Consulting Group Ltd.

Ha.

Ben O'Neill, EIT boneill@scsconsultinggroup.com

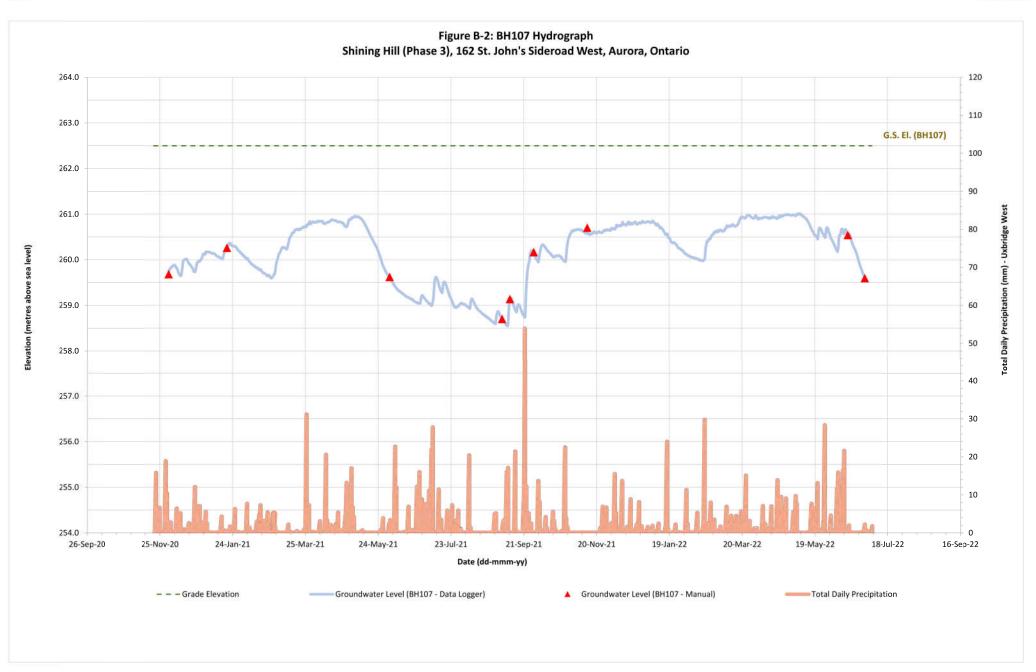
Attachments: Figure 1.1 – Draft Existing Storm Drainage Plan Concept Plan Markup Sketch Design Charrette PowerPoint Presentation


P:\2183 Shining Hill Estates\Correspondence\Minutes of Meetings\Aurora-Newmarket-2020 12(Dec) 15-bbo-Rainscaping Minutes - Shining Hill Estates.docx

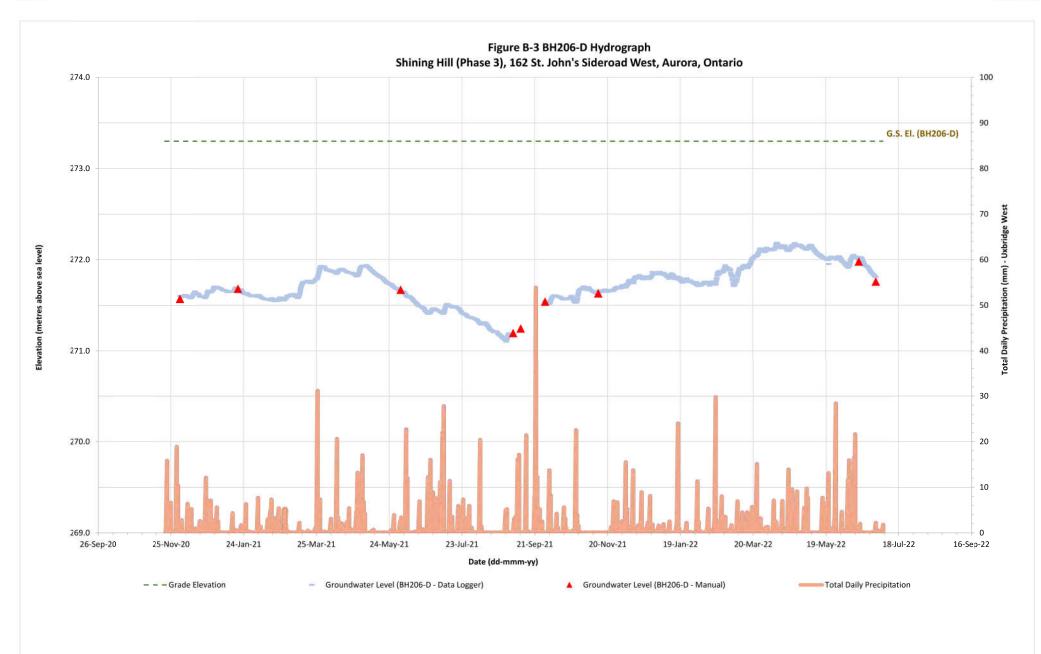
30 Centurian Drive, Suite 100 Markham, Ontario L3R 8B8 Phone 905 475 1900 Fax 905 475 8335 www.scsconsultinggroup.com

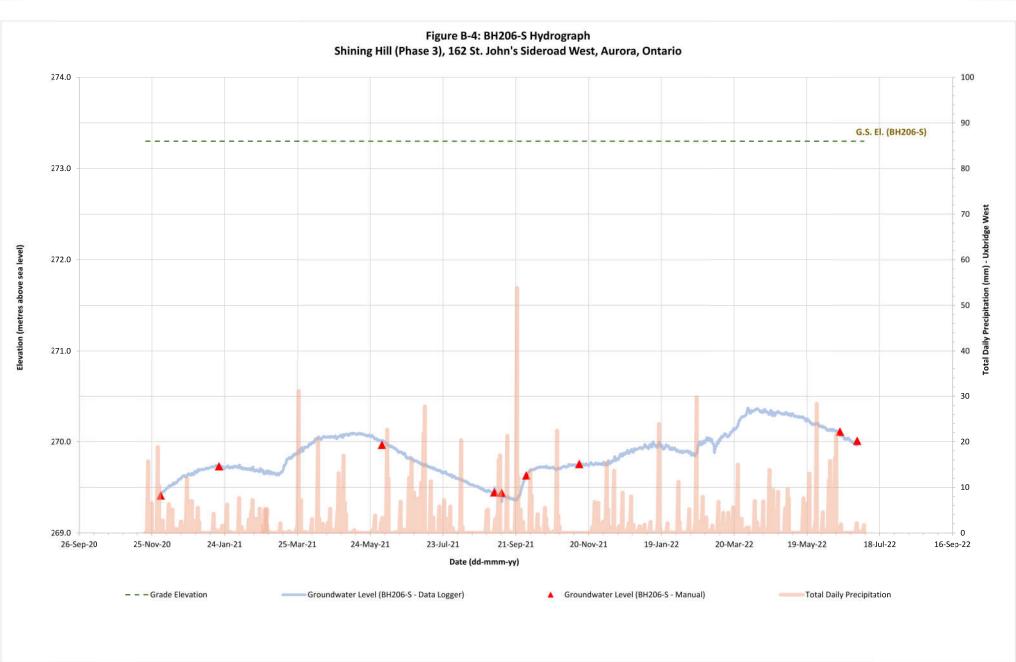
APPENDIX B3

HYDROGEOLOGICAL ASSESSMENT EXCERPTS

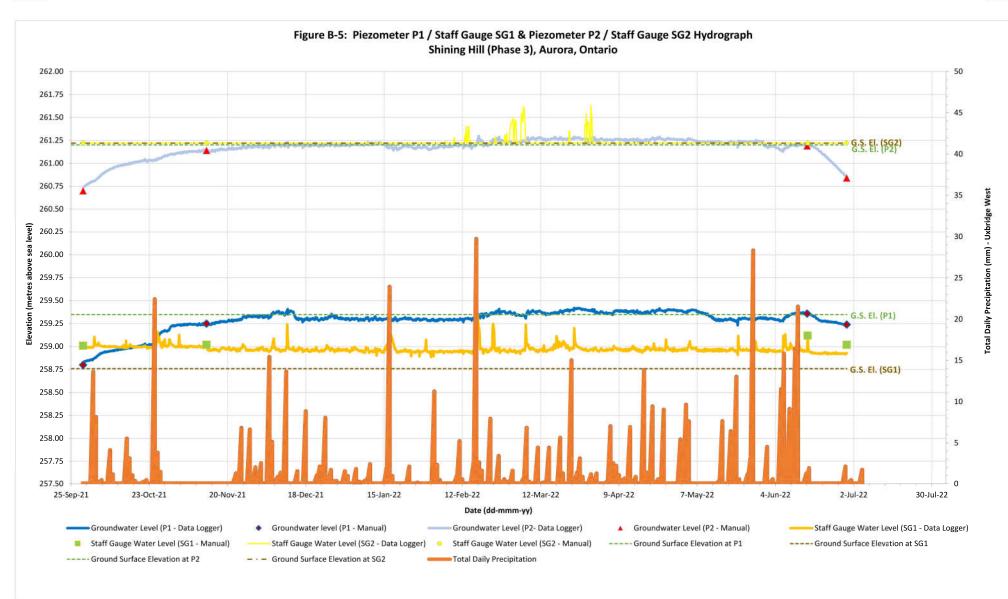


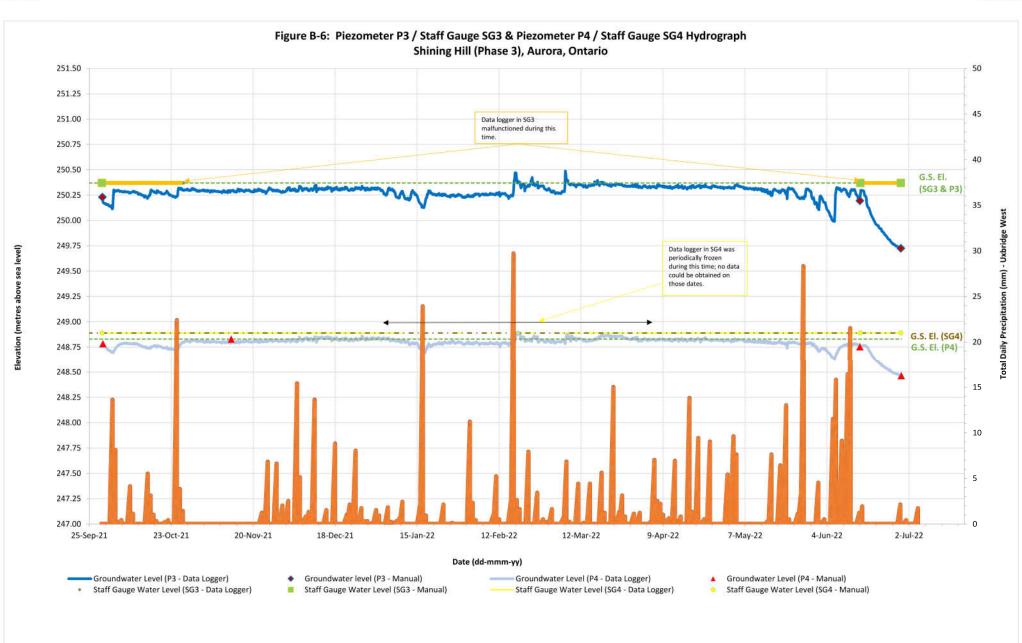
Entered by: AGB/JJG Checked by: CMK

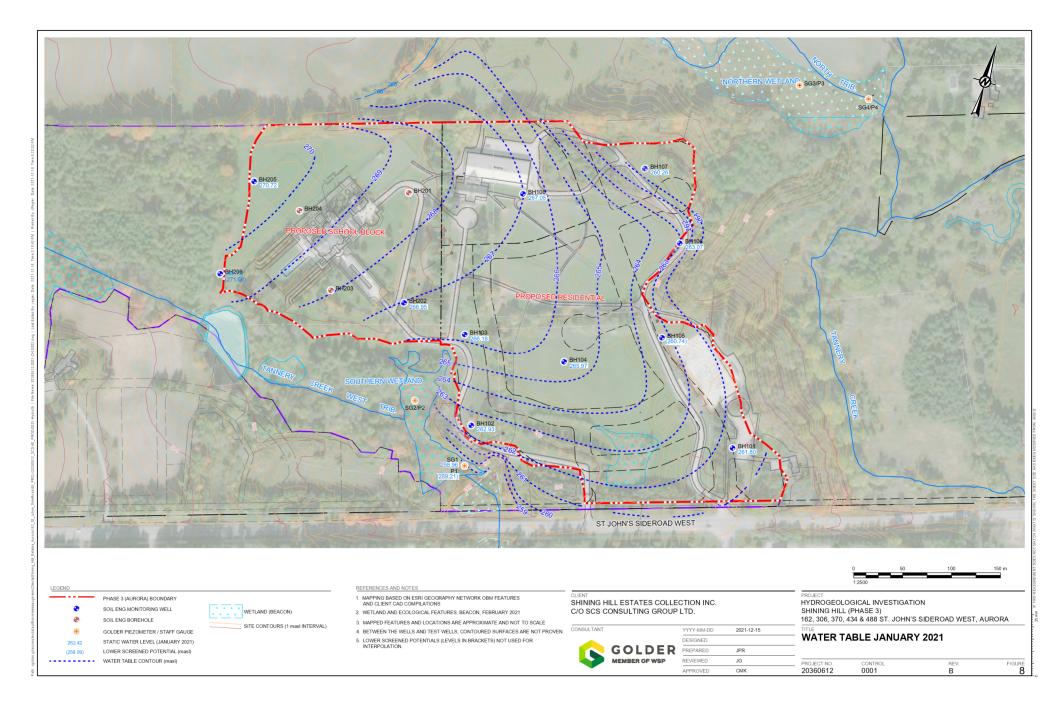

Golder Associates Ltd.



Entered by: AGB/JJG Checked by: CMK


Golder Associates Ltd.


Entered by: AGB/JJG Checked by: CMK


Entered by: AGB/JJG Checked by: CMK

Entered by: JJG Checked by: CMK

Entered by: JJG Checked by: CMK

Staff gauge SG2, located in the palustrine portion of the Southern Wetland, was dry and groundwater levels below the base of the piezometer (June) or below grade (September and November) were recorded at piezometer P2 on four monitoring events in June, September and November 2021. Shallow groundwater depths with an increasing trend from early-October through mid-November 2021 at P2 are illustrated on the hydrograph presented on Figure E-6. These observations are consistent with the location of P2/SG2 in the palustrine portion of the wetland and suggest this portion of the wetland is supported by at least seasonally high groundwater levels.

Staff gauge SG3 and SG4, located in the Northern Wetland, were dry on all five monitoring events in June and September 2021. Below-grade heads were recorded at piezometers P3 and P4, with fluctuating groundwater levels ranging in depth from 1.23 mbgs (P3 on June 2, 2021) to 0.05 mbgs (P4 on September 29, 2021). These observations are consistent with the classification of the Tannery Creek North Tributary as intermittent, and suggest that the Northern Wetland is supported in part by groundwater levels that fluctuate at times close to grade.

3.5 Hydraulic Testing

Single well response testing (i.e., rising head tests) was carried out at BH103, BH108 and BH202 on November 16, 2020, and at BH101 and BH206-S (shallow) on December 1, 2020. The rising head tests were carried out by rapidly lowering the water levels by purging with a dedicated Waterra footvalve and tubing. The resulting water level recoveries were monitored with an electronic water level tape and automatic data logger. The recovery data were analyzed using the AQTESOLV for Windows (1996 – 2007) Version 4.5 software. The Bouwer and Rice (1976) method for unconfined conditions was applied to the rising head test data. Estimates of hydraulic conductivity (K) obtained from the rising head tests are summarized below in Table 1. Summary printouts of the rising head test data and results from AQTESOLV are included in Appendix F.

Borehole	Unit Screened	Depth of Monitoring Well (mbgs)	Method	K (cm/s)
BH101	SILTY CLAY	7.6	Bouwer and Rice (1976), unconfined	2x10 ⁻⁶
BH103	SANDY SILT	4.6	Bouwer and Rice (1976), unconfined	1x10 ⁻³
BH108	SANDY SILT	4.6	Bouwer and Rice (1976), unconfined	5x10 ⁻⁴
BH202	SILTY FINE SAND	6.1	Bouwer and Rice (1976), unconfined	4x10 ⁻⁴
BH206-S (shallow)	SILTY CLAY	7.6	Bouwer and Rice (1976), unconfined	3x10 ⁻⁶

Table 1: Summary of Estima	ted Hydraulic C	onductivity

Notes:

mbgs - metres below ground surface. cm/s - centimetres per second

The hydraulic conductivity estimates for the non-cohesive sandy silt and silty fine sand soils ranged from $4x10^{-4}$ cm/s to $1x10^{-3}$ cm/s, with a geometric mean of $6x10^{-4}$ cm/s (n=3). The hydraulic conductivity estimates for the

silty clay unit ranged from $2x10^{-6}$ cm/s to $3x10^{-6}$ cm/s, with a geometric mean of $3x10^{-6}$ cm/s (n=2). The estimated hydraulic conductivity values are considered reasonable for the units tested.

3.6 Guelph Permeameter Testing

Soil infiltration rate testing was carried out on November 24, 2020 in the unsaturated zone using a Guelph Permeameter (Soilmoisture Equipment Corp., Model 2800K1). The Guelph Permeameter was operated in general accordance with the procedures outlined by the manufacturer (Soilmoisture Equipment Corp., 2012) using a single head method. The apparatus was installed at the base of hand-augered test holes.

Once the outflow of water at the depth of installation reached a steady-state flow rate, the field-saturated hydraulic conductivity, K_{fs}, of the soil was estimated using the following equation (Elrick et. al., 1989):

$$K_{fs} = \frac{C_1 Q_1}{2 \pi H_1^2 + \pi a^2 C_1 + 2 \pi \frac{H_1}{\alpha^*}}$$

Where:

 $Q_1 =$ flow rate (cm³/s)

 C_1 = shape factor

H₁ = water column height (cm)

a = well radius (cm)

 α^* = alpha factor (0.12 cm⁻¹ for Type 3 soils)

The field data and analysis of the infiltration rate tests are presented as Figures F-1 to F-5, Appendix F. Based on the resulting K_{fs} (cm/s), the corresponding infiltration rates (mm/hr) were estimated using the approximate relationship presented in the *Low Impact Development Stormwater Management Planning and Design Guide* (or "*Design Guide*") (TRCA and CVCA, 2010). A summary of the infiltration rate test results is presented in Table 2, below.

Table 2: Summary of Estimated Infiltration Rates

Test	Soil Description	Test Depth Relative to Grade (mbgs)	Approximate Test Elevation ⁶ (masl)	Est. Field- Saturated Hydraulic Conductivity K _{fs} (cm/s)	Estimated Infiltration Rate ¹ (mm/hr)	Correction Factor	Corrected Estimated Infiltration Rate ² (mm/hr)
GP-101 (near BH101)	Inferred SILTY SAND (FILL) ³	1.0	264.0	9x10 ⁻⁵	49	3.5	14
GP-102 (near BH102)	SILT	0.7	264.2	1x10⁻⁵	30	2.5 ⁵	12
GP-105 (near BH105)	SAND	0.8	266.0	1x10 ⁻⁴	50	3.5	14
GP-106 (near BH106)	Inferred SILTY FINE SAND⁴	1.1	264.2	3x10 ⁻⁴	62	3.5	18

Test	Soil Description	Test Depth Relative to Grade (mbgs)	Approximate Test Elevation ⁶ (masl)	Est. Field- Saturated Hydraulic Conductivity K _{fs} (cm/s)	Estimated Infiltration Rate ¹ (mm/hr)	Correction Factor	Corrected Estimated Infiltration Rate ² (mm/hr)
GP-206 (near BH206)	SAND	0.7	272.6	1x10 ⁻³	75	2.5 ⁵	30

Notes:

mbgs – metres below ground surface. cm/s - centimetres per second. mm/hr – millimetres per hour

¹ – based on Table C1 from TRCA and CVCA (2010).

² – correction factor in accordance with Table C2 from TRCA and CVCA (2010).

³ – the base of the test hole was near the contact point between silty sand fill and the underlying silty clay unit. In Golder's opinion, this result is more representative of silty sand fill.

⁴ - the base of the test hole was near the contact point between silty fine sand and the underlying silty clay unit. In Golder's opinion, this result is more representative of silty fine sand.

⁵ – should the clearance between the invert of the LID feature(s) and the underlying silty clay unit be less than 1.5 m, the correction factor should be increased to 3.5.

⁶ – approximate elevation of infiltration rate test based on nearby borehole as indicated.

The field-saturated hydraulic conductivity values of the silty sand fill, silt, silty fine sand, and sand ranged from approximately $1x10^{-5}$ cm/s to $1x10^{-3}$ cm/s, with corresponding infiltration rates ranging from 30 mm/hr to 75 mm/hr.

The infiltration rate estimates from this investigation are based on the test methods discussed above and are for the corresponding fill/soil types encountered. They represent the fill/soil conditions at the tested locations and depths only; conditions may vary between and beyond the tested locations. Care should be taken during construction of any proposed infiltration measures to preserve the existing soil structure and avoid compaction and re-working which could reduce its infiltrative properties.

For preliminary design purposes, a correction factor was applied to estimate the design infiltration rate in accordance with guidance provided in TRCA and CVCA (2010), to account for potential reductions in soil permeability due to compaction, smearing during the construction of a given infiltration feature and the gradual accumulation of fine sediments over the lifespan of the infiltration feature. Based on the guidance, a correction factor of 2.5 to 3.5 was applied to the estimated infiltration rates. The corrected infiltration rate estimate ranges from approximately 12 mm/hr to 30 mm/hr, with a geometric mean of 17 mm/hr (n=5). As noted above in Table 2, should the clearance between the invert of the LID feature(s) and the underlying silty clay unit be less than 1.5 m, the correction factor should be increased to 3.5 where applicable.

3.7 Summary

The Phase 3 development site is currently occupied by a three-storey residence in the northwest portion of the site, a swimming pool, an indoor horse arena with stables, several outdoor horse arenas, a one-storey residence in the southeast corner of the site, and private roadways. The majority of the site is grass-covered with paved areas adjacent to the three-storey residence, indoor horse arena and a former ice rink. The site is generally located on tableland areas between Tannery Creek and the North and West Tributaries of Tannery Creek. Portions of the site are mapped within LSRCA regulated areas, and the western portion of the site is mapped within the Oak Ridges Moraine Conservation Plan Area and Greenbelt.

installed at P3 and P4 on September 29, 2021, set to record every four hours and downloaded on June 29, 2022. Hydrographs of the logger data are provided as Figure B-6, Appendix B. The logger data for P3 indicate near surface water levels from early-October through early-January, a decreasing and then flat water level trend until mid-February, followed by near surface / above grade water levels from mid-February through to early-May, and a decreasing trend in the warmer and drier summer months, as illustrated on the hydrograph presented on Figure B-6. The logger data for P4 follows a similar trend to P3, but with occasional above grade water levels recorded from early-December through early-January. These observations are consistent with the classification of the Tannery Creek North Tributary as intermittent and suggest that the Northern Wetland is supported in part by groundwater levels that fluctuate at times near/above grade.

3.0 UPDATED SITE-WIDE AND FEATURE WATER BALANCES

The reader is referred to Sections 5.1, 5.2, and 5.3 of the WSP Golder January 2022 report for the methods of the water balance assessments, the assumptions and parameters used, and the results, respectively. Also, information on the assumptions used in the updated average annual site-wide water balance assessment is detailed in the WSP Golder April 2022 letter.

This second update includes the proposed rear-yard infiltration trench design and placement provided by SCS, as shown on the Low Impact Development (LID) Plan (SCS Figure 2.6) and the accompanying Rear-Yard Infiltration Trench Details (SCS Figure 2.9) and invert elevations shown on the Preliminary Grading Plan (SCS Figure 5.1) included as Appendix D. The placement of the LIDs is informed by the Toronto and Region Conservation Authority (TRCA) design guidance to maintain a 1 m separation between the seasonally high groundwater elevations and the invert elevations of the rear-yard infiltration trenches. Based on the groundwater elevation data (see Section 2) and the design invert elevations (see Appendix D), the rear-yard infiltration trenches where this separation is inferred not to be present during certain seasons were assumed to have no infiltration during the corresponding months as detailed below.

The remainder of the Site area is assumed to be the same as presented in the WSP Golder April 2022 letter, and the water balance results for the pre-development condition remain the same as those presented in Section 5.3.1.1 of the WSP Golder January 2022 report.

The following changes were made to the site-wide water balance assessment included in the WSP Golder April 2022 letter as well as the watercourse and wetland catchment water balance assessments included in the WSP Golder January 2022 report. The changes made considered updates to the LID mitigation feature designs, locations and elevations (see Appendix D), consideration of the observed seasonal high groundwater elevations (see Section 2), and a change in the size of the rear-yard infiltration trenches to retain up to a 22.7 mm storm event instead of a 25 mm storm event. The following design details are pertinent to specific rear-yard infiltration trench and bioswale infiltration trench installations and include mention of design changes from previous assumptions:

The rear half of Lots 53-58 will report to rear-yard infiltration trenches instead of downspout disconnection. Based on the inferred separation between the groundwater elevations at BH202 and BH103, respectively, and the invert elevations of the proposed trenches, these infiltration trenches were considered to contribute to infiltration year-round during unfrozen conditions. The resultant annual runoff reduction factor was considered to be 78%;

- The rear half of Lots 61 and 63-67 will report to rear-yard infiltration trenches instead of downspout disconnection. Based on the inferred separation between groundwater elevations at BH102 and the invert elevations of the proposed trenches, these infiltration trenches were considered to contribute to infiltration year-round during unfrozen conditions. The resultant seasonal runoff reduction factor was considered to be 78%;
- The rear half of Lot 62 will still report to a rear-yard infiltration trench but, based on the inferred separation between groundwater elevations at BH102 and the invert elevations of the proposed trench, this infiltration trench was considered to contribute to infiltration year-round during unfrozen conditions. The resultant seasonal runoff reduction factor was considered to be 78%;
- The rear half of Lots 26-29 and 59-60 will report to rear-yard infiltration trenches instead of catch basin filtration and downspout disconnection, respectively. Based on the inferred separation between groundwater levels at BH104 and BH103, respectively, and the invert elevations of the proposed trenches, these infiltration trenches were considered to contribute to infiltration only during summer and fall (i.e., for six months of the year). The resultant seasonal runoff reduction factor was considered to be 82%;
- The rear half of Lots 5-11 and 14-17 will report to downspout disconnection instead of rear-yard infiltration trenches; and,
- The rear half of 13 townhouse lots will not have LID coverage instead of reporting to rear-yard infiltration trenches.

The updated infiltration factors are provided in Table C-1, Appendix C.

3.1 **Post-Development Condition Including Mitigation Results**

3.1.1 Results – Site-Wide & Watercourse Catchments

Based on the updated LID scheme, the average annual mitigated post-development water balance was estimated on site-wide and watercourse catchment bases, as summarized below in Table 1, and as detailed in Tables C-2, C-3, C-4, and C-5, Appendix C.

Table 1: Mitigated Post-Development Average Annual Water Balance Results - Site Wide & Watercourse Catchments

	Average Annual Volume (m³/yr)						
Component	Site-Wide	Tannery Creek West Tributary Catchment	Tannery Creek North Tributary Catchment	Tannery Creek Catchment			
Precipitation (P)	119,320	46,310	46,400	26,610			
Evapotranspiration (ET)	44,140	19,460	16,355	8,325			
Surplus (S)	75,080	26,800	30,005	18,275			
Infiltration (I)	17,480	8,275	5,075	4,130			
Runoff (R)	57,600	18,525	24,930	14,145			

On a site-wide basis, the updated LID mitigation scheme is estimated to increase average annual infiltration by approximately 7,585 m³ and to similarly reduce average annual runoff compared to the un-mitigated postdevelopment condition. Average annual infiltration is estimated to increase by 4% (i.e., 16,740 m³ to 17,480 m³) and average annual runoff is expected to increase by 89% (i.e., 30,485 m³ to 57,600 m³) as a result of development compared to pre-development conditions.

Considering the updated LID mitigation scheme, the estimated average annual runoff contributing to the Tannery Creek West Tributary Catchment is approximately 18,525 m³ and the estimated average annual infiltration within the catchment is approximately 8,275 m³. As a result of catchment boundary and land use changes from site development, runoff is expected to increase by 39% (i.e., 13,375 m³ to 18,525 m³) and infiltration is expected to decrease by 2% (i.e., 8,460 m³ to 8,275 m³) on an average annual basis.

Considering the updated LID mitigation scheme, the estimated average annual runoff contributing to the Tannery Creek North Tributary Catchment is approximately 24,930 m³ and the estimated average annual infiltration within the catchment is approximately 5,075 m³. As a result of catchment area and land use changes from site development, runoff is expected to increase by 132% (i.e., 10,730 m³ to 24,930 m³) and infiltration is expected to decrease by 9% (i.e., 5,555 m³ to 5,075 m³) on an average annual basis.

Considering the updated LID mitigation scheme, the estimated average annual runoff contributing to the Tannery Creek Catchment is approximately 14,145 m³ and the estimated average annual infiltration within the catchment is approximately 4,130 m³. As a result of catchment boundary and land use changes from site development, runoff is expected to increase by 122% (i.e., 6,380 m³ to 14,145 m³) and infiltration is expected to increase by 52% (i.e., 2,725 m³ to 4,130 m³) on an average annual basis.

3.1.2 Results – Wetland Catchments

Based on the updated LID scheme, the average annual mitigated post-development water balance for the Southern Wetland (palustrine portion) and the Northern Wetland were estimated, as summarized below in Table 2, and as detailed in Tables C-6 and C-7, Appendix C.

Component	Average Annual Volume (m³/yr)				
	Southern Wetland	Northern Wetland			
Precipitation (P)	11,375	34,630			
Evapotranspiration (ET)	5,425	9,425			
Surplus (S)	5,930	25,190			
Infiltration (I)	2,220	3,390			
Runoff (R)	3,710	21,800			

Table 2. Mitirated Deat Devale	nmont Average Annual V	Notor Delense Desults - Ma	
Table 2: Mitigated Post-Develo	pment Average Annual i	water balance Results – we	uanus

Considering the updated LID mitigation scheme, average annual infiltration contributing to the palustrine section of the Southern Wetland is estimated to increase by 48% (i.e., 1,500 m³ to 2,220 m³) and average annual runoff is

expected to remain essentially unchanged (i.e., 3,690 m³ to 3,710 m³) as a result of development compared to pre-development conditions.

Considering the updated LID mitigation scheme, average annual infiltration contributing to the Northern Wetland is estimated to increase by 26% (i.e., 2,690 m³ to 3,390 m³) and average annual runoff is expected to increase by 269% (i.e., 5,915 m³ to 21,800 m³) as a result of development compared to pre-development conditions.

4.0 **DISCUSSION**

The changes to surplus, infiltration and runoff under the mitigated post-development scenario on site-wide and feature-specific bases, relative to the results provided in the WSP Golder April 2022 letter (site-wide basis) and WSP Golder January 2022 report (feature-specific basis), are summarized in Table 3.

Table 3: Average Annual Water Balance Summary – Results Comparison	Table 3: Average	Annual Water	r Balance Summa	ary – Results	Comparison
--	------------------	--------------	-----------------	---------------	------------

		Post-Deve	lopment (Mitigated	d) m³/yr
Comp	onent	WSP Golder 2022 Letter/Report	Updated Water Balance	Change
Surplus (S)		75,080	75,080	-
Site-Wide	Infiltration (I)	16,915	17,480	+565 (+3%)
	Runoff (R)	58,165	57,600	-565 (-1%)
Tannery	Surplus (S)	27,440	26,800	-640 (-2%)
Creek West Tributary	Infiltration (I)	7,225	8,275	+1,050 (+15%)
Catchment	Runoff (R)	(R) 20,215 18,525		-1,690 (-8%)
Tannery	Surplus (S)	30,760	30,005	-755 (-2%)
Creek North Tributary	Infiltration (I)	5,900	5,075	-825 (-14%)
Catchment	Runoff (R)	24,860	24,930	+70 (<1%)
Tannery	Surplus (S)	19,005	18,275	-730 (-4%)
Creek	Infiltration (I)	4,080	4,130	+50 (+1%)
Catchment	Runoff (R)	14,925	14,145	-780 (-5%)
	Surplus (S)	5,930	5,930	-
Southern Wetland	Infiltration (I)	1,765	2,220	455 (+26%)
	Runoff (R)	4,165	3,710	-455 (-11%)
	Surplus (S)	25,945	25,190	-755 (-3%)
Northern Wetland	Infiltration (I)	4,215	3,390	-825 (-20%)
	Runoff (R)	21,730	21,800	+70 (<1%)

In the updated mitigated post-development scenario, average annual infiltration on a site-wide basis is estimated to increase by approximately 4% (i.e., 16,740 m³ to 17,480 m³) relative to pre-development conditions. The site-wide mitigated post-development infiltration rate is therefore considered to approximate pre-development conditions (i.e., within +/- 10%), and therefore no impacts to groundwater features (e.g., in the Tannery Creek Sub-Watershed upstream of Yonge Street) including groundwater recharge as it relates to potable groundwater quantity are expected as a result of site development. This is similar to the conclusion of the WSP Golder January 2022 report.

Considering the updated mitigated post-development scenario, the average annual infiltration contributing to the Tannery Creek West Tributary Catchment is estimated to decrease by approximately 2% (i.e., 8,460 m³ to 8,275 m³) relative to pre-development conditions. The changes result in the mitigated post-development infiltration rate now approximating pre-development conditions (i.e., within +/- 10%), and therefore no impacts to groundwater features in the Tannery Creek West Tributary Catchment are expected. The changes address a recommendation in the WSP Golder 2022 report to increase mitigated post-development infiltration rates to within 10% of pre-development conditions.

Considering the updated mitigated post-development scenario, the average annual infiltration contributing to the Tannery Creek North Tributary Catchment is estimated to decrease by approximately 9% (i.e., 5,555 m³ to 5,075 m³) relative to pre-development conditions. The mitigated post-development infiltration rate is therefore considered to approximate pre-development conditions (i.e., within +/- 10%), and therefore no impacts to groundwater features in the Tannery Creek North Tributary Catchment are expected. This is similar to the conclusion of the WSP Golder January 2022 report.

Considering the updated mitigated post-development scenario, the average annual infiltration contributing to the Tannery Creek Catchment is estimated to increase by approximately 52% (i.e., 2,725 m³ to 4,130 m³) relative to pre-development conditions. As noted in the WSP Golder January 2022 report, while more infiltration is expected as a result of development compared to pre-development conditions, the Tannery Creek Catchment (3.08 ha) represents 0.08% of the 3,827.9 ha Tannery Creek Sub-Watershed upstream of Yonge Street. On this basis, no significant impact to groundwater-dependent features in the Tannery Creek Sub-Watershed upstream of Yonge Street is expected. This is similar to the conclusion of the WSP Golder January 2022 report.

Considering the updated mitigated post-development scenario, the average annual infiltration contributing to the palustrine section of the Southern Wetland is estimated to increase by approximately 48% (i.e., 1,500 m³ to 2,220 m³) relative to pre-development conditions. The Tannery Creek West Tributary is classified as a coldwater and permanently flowing stream, and field data confirms that the palustrine section of the Southern Wetland at least seasonally has no standing surface water and groundwater heads that fluctuate at times close to or just above grade. A 48% increase in average annual infiltration is expected to result in an increase in groundwater discharge rates and the length of seasonally high groundwater levels in the palustrine section of the Southern Wetland. While the changes increase groundwater contributions to the Southern Wetland, they also assist to approximate the overall groundwater contributions from the site to this catchment area (i.e., within 2% of pre-development conditions as noted above).

Considering the updated mitigated post-development scenario, the average annual infiltration contributing to the Northern Wetland is estimated to increase by approximately 26% (i.e., 2,690 m³ to 3,390 m³) relative to predevelopment conditions. As noted in the WSP Golder January 2022 report, the Tannery Creek North Tributary is classified as an intermittent coldwater stream, and field data confirms that the North Wetland at least seasonally has no standing surface water and groundwater levels that fluctuate at times close to grade. The Northern Wetland is located at the downstream end (and the topographically lowest portion) of the Tannery Creek North Tributary Sub-watershed; this part of the sub-watershed receives groundwater input from most of the sub-watershed area and is therefore the least susceptible area to groundwater level changes. Further, the Tannery Creek North Tributary Catchment (5.37 ha) represents 12% of the 45.5 ha Tannery Creek North Tributary Sub-watershed. Therefore, while additional groundwater input to the North Wetland Catchment area may occur, the increase is tempered by overall balanced mitigated post-development infiltration rates within the Tannery Creek North Tributary Sub-watershed which contributes to the groundwater regime in the vicinity of the North Wetland. This is similar to the conclusion of the WSP Golder January 2022 report.

5.0 CLOSURE

We trust that this submission meets your current requirements. If you have any questions regarding the contents of this letter, please contact the undersigned.

fel Bopanl

Joel Gopaul, B.A.Sc. *Geo-Environmental Consultant*

David Hinton, P.Eng., PMP Water Resources Engineer

Associate, Senior Hydrogeologist

DH/JJG/CK/lb

cc: Mr. Paul Bailey, Shining Hill Estates Collection Inc.

Appendices: Figures

Figures

Appendix A – Important Information and Limitations of this Report

Appendix B – Water Level Measurements

- Appendix C Water Balance Results
- Appendix D Supporting Documentation

https://golderassociates.sharepoint.com/sites/133588/project files/6 deliverables/technical memorandums/updated water balance letter/20360612 (1000) 2022'09'15 updated water balance letter - shining hill (phase 3) rev2.docx

APPENDIX C

HYDROLOGY MODELLING AND PARAMETERS

The following secure link is being provided by **SCS Consulting Group** to share Shining Hill Estates PH3 (Aurora) FSSR related digital data:

https://filesafecloud.scsconsultinggroup.com/url/rbt2kfnryu3hdsr2

Please click on the link and download all files from this location.

➡ VO Modelling

Shining Hill Estates PH3 (Aurora) Existing Hydrology Schematic September 2022

Existing Conditions VO2 Parameter Summary

Shining Hill Estates PH3 (Aurora) Project Number: 2183 Date: September 2022 Designer Initials: MECM

NASHYD

Number	101	102	103
Description			
DT(min)	2	2	2
Area (ha)	4.07	3.63	2.38
CN*	75.0	80.0	80.0
IA(mm)	6.4	5.7	4.8
TP Method	Uplands	Uplands	Uplands
TP (hr)	0.43	0.16	0.12

Total Area = 10.1 ha

P:\2183 Shining Hill Estates\Design\SWM\FSSR Phase 3\Hydrology\2183-VO2 Model Parameters Pre.xlsm

Existing Conditions CN Calculations

Shining Hill Estates PH3 (Aurora) Project Number: 2183 Date: September 2022 Designer Initials: MECM

Site Soils: (per OMAFRA County Soils Mapping)

Soil Type Schomberg Clay Loam Hydrologic Soil Group

TABLE OF CURVE NUMBERS (CN's)**									
Land Use Hydrologic Soil Type N							Manning's	Source	
	A	AB	В	BC	С	CD	D	'n'	
Meadow "Good"	30	44	58	64.5	71	74.5	78	0.40	MTO
Woodlot "Fair"	36	48	60	66.5	73	76	79	0.40	MTO
Gravel	76	80.5	85	87	89	90	91	0.30	USDA
Lawns "Good"	39	50	61	67.5	74	77	80	0.25	USDA
Pasture/Range	58	61.5	65	70.5	76	78.5	81	0.17	MTO
Crop	66	70	74	78	82	84	86	0.13	MTO
Fallow (Bare)	77	82	86	89	91	93	94	0.05	MTO
Low Density Residences	57	64.5	72	76.5	81	83.5	86	0.25	USDA
Streets, paved	98	98	98	98	98	98	98	0.01	USDA

1. MTO Drainage Manual (1997), Design Chart 1.09-Soil/Land Use Curve Numbers

2. USDA (1986), Urban Hydrology for Small Watersheds, Table 2.2-Runoff Curve Numbers for Urban Areas

HYDROLOGIC SOIL TYPE (%) - Existing Conditions								
			Hyc	Irologic Soil 7	Гуре			
Catchment	А	AB	В	BC	С	CD	D	TOTAL
101	0.0	0.0	0.0	0.0	100.0	0.0	0.0	100
102	0.0	0.0	0.0	0.0	100.0	0.0	0.0	100
103	0.0	0.0	0.0	0.0	100.0	0.0	0.0	100

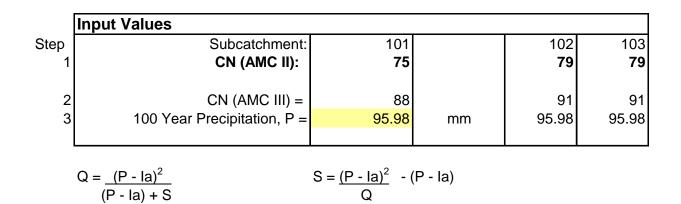
	HYDROLOGIC SOIL TYPE (%) - Existing Conditions											
	Hydrologic Soil Type											
Catchment	А	A AB B BC C CD D										
101					100			100				
102					100			100				
103					100			100				

	LAND USE (%) - Existing Conditions												
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture Range	Crop	Fallow (Bare)	Low Density Residences	Impervious	Total			
101	3.1	29.1	0.0	61.6	0.0	0.0	0.0	0.0	6.2	100.0			
102	0.0	26.4	0.3	52.5	0.0	0.0	0.0	0.0	20.8	100.0			
103	0.0	10.1	0.0	67.1	0.0	0.0	0.0	0.0	22.8	100.0			

Note: Where STANDHYD command used (shaded), impervious fraction is not considered in CN determination, since %Imp directly input in STANDHYD command

	LAND USE (%) - Existing Conditions												
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture	Crop	Fallow	Low Density	Impervious	Total			
					Range		(Bare)	Residences					
101	3.1	29.1		61.6					6.2	100.0			
102		26.4	0.3	52.5					20.8	100.0			
103		10.1		67.1					22.8	100.0			

Note: Where STANDHYD command used (shaded), impervious fraction is not considered in CN determination, since %Imp directly input in STANDHYD commar


	CURVE NUMBER (CN) - Existing Conditions											
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture	Crop	Fallow	Low Density	•	Ū		
					Range		(Bare)	Residences		CN		
404	0.0	01.0	0.0	45.0	0.0	0.0	0.0	0.0	6.4	75		
101	2.2	21.2	0.0	45.6	0.0	0.0	0.0	0.0	6.1	75		
102	0.0	19.3	0.3	38.8	0.0	0.0	0.0	0.0	20.4	79		
103	0.0	7.4	0.0	49.7	0.0	0.0	0.0	0.0	22.3	79		

** AMC II assumed

P:\2183 Shining Hill Estates\Design\SWM\FSSR Phase 3\Hydrology\2183-VO2 Model Parameters Pre.xlsm

Existing Conditions CN Calculations

Q = rainfall excess or runoff, mm

S = potential maximum retention or available storage, mm

CN = <u>25400</u>	S = <u>25400</u> - 254
S + 254	CN

CN* = modified SCS curve # that better reflects Ia conditions in Ontario

	Output Values				
	Subcatchment:	101		102	103
	S _{III} =	34.64	mm	25.12	25.12
	SCS Assumption of 0.2 S = Ia =	6.93	mm	5.02	5.02
4	Q _{III} =	64.12	mm	71.27	71.27
	Preferred Initial Abstraction, Ia =	6.4	mm	5.7	4.8
5	S* _{III} =	35.65	mm	24.10	25.44
6	CN* _{III} =	87.69	mm	91.33	90.90
	CN* _{III} =	88	Rounded	91	91
7	CN* _{II} =	75	convert	80	80

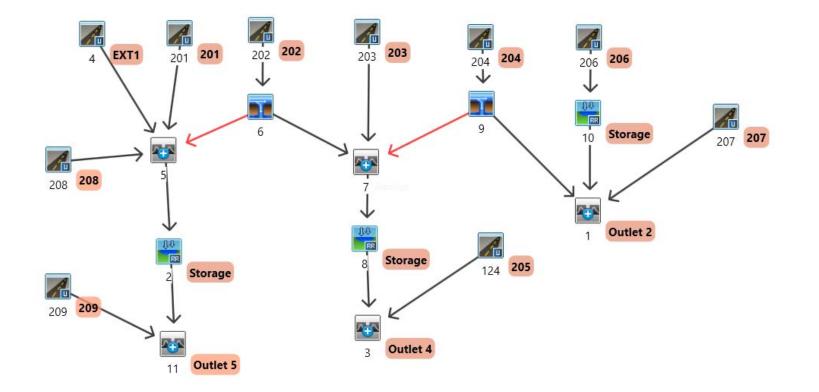
Explanation of Procedure

- 1 Determine CN based on typical AMC II conditions (attached)
- 2 Convert CN from AMC II to AMC III conditions (standard SCS tables)
- 3 Get precipitation depth P for 100 year storm
- 4 Using CN_{III} with Ia = 0.2S, compute Q_{III} for 100 year precipitation
- 5 For the same Q_{III} , compute S^*_{III} using Ia=1.5mm (or otherwise determined)
- 6 Compute CN*III using S*III
- 7 Calculate CN*_{II} using SCS conversion table

	LAND USE (%) - Existing Conditions												
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture	Crop		Low Density	Impervious	Total			
	4.07	3.63	2.38		Range		(Bare)	C					
101	3.1	29.1		61.6					6.2	100.0			
102		26.4	0.3	52.5					20.8	100.0			
103		10.1		67.1					22.8	100.0			

	IA VALUES (mm) - Existing Conditions												
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture	Crop	Fallow	Low Density	Impervious	Total			
					Range		(Bare)	Residences					
IA (mm)	8	10	2	5	8	8	3	2	2				
101	0.2	2.9		3.1					0.1	6.4			
102		2.6	0.0	2.6					0.4	5.7			
103		1.0		3.4					0.5	4.8			

* IA values based on LRSCA guidelines



Existing Conditions Time to Peak Calculations

Airport Method:	(used for all catchments with a runoff coefficient of less than 0.4)	

Catchment ID	High Elevation	Low Elevation	Length (m)	Slope (%)	Runoff Coefficient	Time of Concentration (minutes)	Time of Concentration (hr)	Time to Peak (hr)
101a	268.05	267.39	41	1.62	0.35	13.31	0.22	0.15
101b	267.39	265.41	126	1.57	0.15	29.95	0.50	0.33
101c	265.41	265.39	37	0.05	0.35	38.62	0.64	0.43
101d	265.39	265.38	25	0.04	0.40	33.13	0.55	0.37
101e	265.38	263.67	19	9.10	0.42	4.64	0.08	0.05
101								1.34
102a	273.25	271.07	45	4.81	0.15	12.42	0.21	0.14
102b	271.07	270.02	22	4.88	0.85	2.24	0.04	0.03
102c	270.02	269.68	22	1.55	0.35	9.93	0.17	0.11
102d	269.68	266.03	156	2.33	0.15	29.27	0.49	0.33
102e	266.03	263.27	33	8.29	0.42	6.37	0.11	0.07
102f	263.27	262.13	12	9.64	0.85	1.33	0.02	0.01
102g	262.13	261.46	26	2.56	0.15	11.62	0.19	0.13
102	2							0.82
103a	269.57	269.32	16	1.58	0.35	8.37	0.14	0.09
103b	269.32	264.27	201	2.51	0.15	32.41	0.54	0.36
103	3							0.46

Shining Hill Estates PH3 (Aurora) Proposed Hydrology Schematic September 2022

Proposed Conditions VO2 Parameter Summary

Shining Hill Estates Project Number: 2183 Date: September 2022 Designer Initials: M.E.C.M.

STANDHYD										
Number	201	202	203	204	205	206	207	208	209	EXT1
Description										
DT(min)	2	2	2	2	2	2	2	2	2	2
Area (ha)	1.68	0.26	2.95	0.55	0.07	2.17	0.29	1.41	0.26	0.51
XIMP ^{1,2}	0.82	0.39	0.29	0.28	0.07	0.25	0.00	0.44	0.11	0.66
TIMP ²	0.82	0.63	0.62	0.62	0.59	0.62	0.45	0.65	0.61	0.66
CN*	73.0	73.0	73.0	73.0	73.0	73.0	73.0	73.0	73.0	73.0
IA(mm)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
SLPP(%)	2	2	2	2	2	2	2	2	2	2
LGP(m)	40	40	40	40	40	40	40	40	40	40
MNP	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
DPSI (mm)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
SLPI(%)	1	1	1	1	1	1	1	1	1	1
LGI(m)	105.83	41.63	140.35	60.55	21.60	120.28	43.97	96.95	41.63	58.31
MNI	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013

¹Note that where there is NO directly connected area (ie: roof runoff to grassed areas), the hydrology program does not accept XIMP=0%, therefore, XIMP = 1% has been used ²Note that where there is NO pervious area, the hydrology program does not accept TIMP and XIMP=100%, therefore, TIMP and XIMP = 99% has been used

Total Area = 10.2 ha

Proposed Conditions CN Calculations

Shining Hill Estates Project Number: 2183 Date: September 2022 Designer Initials: M.E.C.M.

Site Soils: (per OMAFRA County Soils Mapping)

Soil Type Schomberg Clay Loam Hydrologic Soil Group

			TABLE	OF CURVE	NUMBERS (CN's)**				
Land Use				Hyd	Irologic Soil T	уре			Manning's	Source
		A	AB	В	BC	С	CD	D	'n'	
Meadow	"Good"	30	44	58	64.5	71	74.5	78	0.40	MTO
Woodlot	"Fair"	36	48	60	66.5	73	76	79	0.40	MTO
Gravel		76	80.5	85	87	89	90	91	0.30	USDA
Lawns	"Good"	39	50	61	67.5	74	77	80	0.25	USDA
Pasture/Rang	ge	58	61.5	65	70.5	76	78.5	81	0.17	MTO
Crop		66	70	74	78	82	84	86	0.13	MTO
Fallow (Bare)	•		82	86	89	91	93	94	0.05	MTO
Low Density	Residences	57	64.5	72	76.5	81	83.5	86	0.25	USDA
Streets, pave	ed	98	98	98	98	98	98	98	0.01	USDA

1. MTO Drainage Manual (1997), Design Chart 1.09-Soil/Land Use Curve Numbers

2. USDA (1986), Urban Hydrology for Small Watersheds, Table 2.2-Runoff Curve Numbers for Urban Areas

. TYPE (%) -					0			
			Hyd	rologic Soil T	уре			
Catchment	А	AB	В	BC	С	CD	D	TOTAL
201	0.0	0.0	0.0	0.0	100.0	0.0	0.0	100
202	0.0	0.0	0.0	0.0	100.0	0.0	0.0	100
203	0.0	0.0	0.0	0.0	100.0	0.0	0.0	100
204	0.0	0.0	0.0	0.0	100.0	0.0	0.0	100
205	0.0	0.0	0.0	0.0	100.0	0.0	0.0	100
206	0.0	0.0	0.0	0.0	100.0	0.0	0.0	100
207	0.0	0.0	0.0	0.0	100.0	0.0	0.0	100
208	0.0	0.0	0.0	0.0	100.0	0.0	0.0	100
209	0.0	0.0	0.0	0.0	100.0	0.0	0.0	100
EXT1	0.0	0.0	0.0	0.0	100.0	0.0	0.0	100

		HYDROL	OGIC SOIL "	TYPE (%) - F	Proposed Co	nditions		
			Hyd	rologic Soil 7	Гуре			
Catchment	А	AB	В	BC	С	CD	D	TOTAL
201					100			100
202					100			100
203					100			100
204					100			100
205					100			100
206					100			100
207					100			100
208					100			100
209					100			100
EXT1					100			100

Catchment	Meadow	Woodlot	Gravel		Pasture	Cron	Fallow	Low Density	Imponique	Total
Catchinent	Ivieadow	vvoodiot	Glaver	Lawns		Crop		,		TOLA
					Range		(Bare)	Residences		
201	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100.0
202	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100.0
203	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100.0
204	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100.0
205	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100.0
206	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100.0
207	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100.0
208	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100.0
209	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100.0
EXT1	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100.0

Note: Where STANDHYD command used (shaded), impervious fraction is not considered in CN determination, since %Imp directly input in STANDHYD command

P:\2183 Shining Hill Estates\Design\SWM\FSSR Phase 3\Hydrology\2183-VO2 Model Parameters Post.xlsm

Proposed Conditions CN Calculations

Shining Hill Estates Project Number: 2183 Date: September 2022 Designer Initials: M.E.C.M.

				AND USE (%	%) - Propose	d Conditions	S			
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture Range	Crop	Fallow (Bare)	Low Density Residences	Impervious	Total
					range		(20.0)			
201				100.0						100.0
202				100.0						100.0
203				100.0						100.0
204				100.0						100.0
205				100.0						100.0
206				100.0						100.0
207				100.0						100.0
208				100.0						100.0
209				100.0						100.0
EXT1				100.0						100.0

Note: Where STANDHYD command used (shaded), impervious fraction is not considered in CN determination, since %Imp directly input in STANDHYD command

			CUR	VE NUMBER	R (CN) - Prop	osed Condit	tions			
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture	Crop	Fallow	Low Density	Impervious	Weighted
					Range		(Bare)	Residences		CN
201	0.0	0.0	0.0	74.0	0.0	0.0	0.0	0.0	0.0	74
202	0.0	0.0	0.0	74.0	0.0	0.0	0.0	0.0	0.0	74
203	0.0	0.0	0.0	74.0	0.0	0.0	0.0	0.0	0.0	74
204	0.0	0.0	0.0	74.0	0.0	0.0	0.0	0.0	0.0	74
205	0.0	0.0	0.0	74.0	0.0	0.0	0.0	0.0	0.0	74
206	0.0	0.0	0.0	74.0	0.0	0.0	0.0	0.0	0.0	74
207	0.0	0.0	0.0	74.0	0.0	0.0	0.0	0.0	0.0	74
208	0.0	0.0	0.0	74.0	0.0	0.0	0.0	0.0	0.0	74
209	0.0	0.0	0.0	74.0	0.0	0.0	0.0	0.0	0.0	74
EXT1	0.0	0.0	0.0	74.0	0.0	0.0	0.0	0.0	0.0	74

** AMC II assumed

P:\2183 Shining Hill Estates\Design\SWM\FSSR Phase 3\Hydrology\2183-VO2 Model Parameters Post.xlsm

Proposed Conditions CN Calculations

Shining Hill Estates Project Number: 2183 Date: September 2022 Designer Initials: M.E.C.M.

	Input Values												
Step	Subcatchment:			201	202	203	204	205	206	207	208	209	EXT1
1	CN (AMC II):			74	74	74	74	74	74	74	74	74	74
2	CN (AMC III) =			88	88	88	88	88	88	88	88	88	88
3	100 Year Precipitation, P =	95.98	mm	95.98	95.98	95.98	95.98	95.98	95.98	95.98	95.98	95.98	95.98

$$Q = \frac{(P - Ia)^2}{(P - Ia) + S}$$
 $S = \frac{(P - Ia)^2}{Q} - (P - Ia)$

Q = rainfall excess or runoff, mm

S = potential maximum retention or available storage, mm

CN = <u>25400</u>	S = <u>25400</u> - 254
S + 254	CN

CN* = modified SCS curve # that better reflects Ia conditions in Ontario

	Output Values											
Γ	Subcatchment:		201	202	203	204	205	206	207	208	209	EXT1
	S _{III} =	mm	34.64	34.64	34.64	34.64	34.64	34.64	34.64	34.64	34.64	34.64
	SCS Assumption of 0.2 S = Ia =	mm	6.93	6.93	6.93	6.93	6.93	6.93	6.93	6.93	6.93	6.93
4	Q _{III} =	mm	64.12	64.12	64.12	64.12	64.12	64.12	64.12	64.12	64.12	64.12
	#VALUE!											
	Preferred Initial Abstraction, Ia =	mm	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
5	S* _{III} =	mm	38.12	38.12	38.12	38.12	38.12	38.12	38.12	38.12	38.12	38.12
6	CN* ₁₁₁ =	mm	86.95	86.95	86.95	86.95	86.95	86.95	86.95	86.95	86.95	86.95
	CN* _{III} =	Rounded	87	87	87	87	87	87	87	87	87	87
7	CN* _{II} =	convert	73	73	73	73	73	73	73	73	73	73

Explanation of Procedure

1 Determine CN based on typical AMC II conditions (attached)

2 Convert CN from AMC II to AMC III conditions (standard SCS tables)

3 Get precipitation depth P for 100 year storm

4 Using CN_{III} with Ia = 0.2S, compute Q_{III} for 100 year precipitation

5 For the same Q_{III}, compute S*_{III} using Ia=1.5mm (or otherwise determined)

6 Compute CN*_{III} using S*_{III}

7 Calculate CN*_{II} using SCS conversion table

P:\2183 Shining Hill Estates\Design\SWM\FSSR Phase 3\Hydrology\2183-VO2 Model Parameters Post.xlsm

Proposed Conditions IA Calculations

			L	AND USE (%	%) - Propose	d Condition	S			
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture	Crop	Fallow	Low Density	Impervious	Total
					Range		(Bare)	Residences		
201				100.0						100.0
202				100.0						100.0
203				100.0						100.0
204				100.0						100.0
205				100.0						100.0
206				100.0						100.0
207				100.0						100.0
208				100.0						100.0
209				100.0						100.0
EXT1				100.0						100.0

			IA	VALUES (m	m) - Propos	ed Conditior	าร			
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture Range	Crop	Fallow (Bare)	Low Density Residences		Total
IA (mm)	8	10	2	5	8	8	3	2	2	
201				5.0						5.0
202				5.0						5.0
203				5.0						5.0
204				5.0						5.0
205				5.0						5.0
206				5.0						5.0
207				5.0						5.0
208				5.0						5.0
209				5.0						5.0
EXT1				5.0						5.0

* IA values based on LRSCA guidelines

Proposed Conditions Percent Impervious Calculations

Shining Hill Estates Project Number: 2183 Date: September 2022 Designer Initials: M.E.C.M.

							StandH	yd IDs				
			201	202	203	204	205	206	207	208	209	EXT1
Catchme	ent Area (ha)		1.68	0.26	2.95	0.55	0.07	2.17	0.29	1.41	0.26	0.51
Land Use Areas	Timp	Ximp					Land Use	e Areas				
Neighbourhood Park	85%	85%	1.45							0.15		
Townhouses	64%	13%		0.03						0.34	0.18	
Single House - Rear Lot	45%	0%							0.29			
Single Houses	59%	7%		0.09	1.93	0.36	0.07	1.56		0.22	0.07	
15m ROW	69%	69%								0.19		
16.5m ROW	70%	70%			0.10	0.19						
23.0m ROW	66%	66%	0.23	0.14	0.62					0.06		
18.0m ROW	72%	72%			0.19			0.61		0.19		
36.0m ROW	83%	83%			0.11							
External Area	65%	65%										0.52
Laneway - Uncontrolled	100%	0%										
SWM Block	50%	50%								0.20		
Open Space	7%	0%									0.01	
Laneway	48%	48%								0.05		
		Fotal Land Use =	1.68	0.26	2.95	0.55	0.07	2.17	0.29	1.41	0.26	0.52
		Timp =	82%	63%	62%	62%	59%	62%	45%	65%	61%	66%
		Ximp =	82%	39%	29%	28%	7%	25%	0%	44%	11%	66%

Percent Impervious (Timp) Calculations per Typical Layout for Single Detached Dwelling

Land Use	Lot Type				
	81.64965809	13.7x30m	15.24x30m	Max. Timp	Max. Ximp
Single Houses	59%	59%	59%	59%	7%
	6.1x30m	6.1x35m			
Townhouses	58%	64%		64%	13%

*Ximp calculations based on total impervious areas directly connected

APPENDIX D

PHOSPHORUS BUDGET

Existing Phosphorus Budget

Watershed East Holland River

Land Cover	TP Loading (kg/ha/yr)	Area (ha)	TP Loading (kg/yr)
Low Intensity Development	0.13	10.90	1.417
Forest	0.10	2.78	0.278
Wetland	0.10	0.13	0.013
TOTAL		13.81	1.708

	Phosphorus Export (kg/ha/yr)											
	d		Bolf	High In Develo	-	sity ent		oad		ç		er
Subwatershed	Cropland	Cropland Hay-Pasture	Sod Farm/Golf Course	Commercial /Industrial	Residential	Low Intensity Development	Quarry	Unpaved Road	Forest	Transition	Wetland	Open Water
		ľ	Monito	red Sub	watersh	neds						
Beaver River	0.22	0.04	0.01	1.82	1.32	0.19	0.06	0.83	0.02	0.04	0.02	0.26
Black River	0.23	0.08	0.02	1.82	1.32	0.17	0.15	0.83	0.05	0.06	0.04	0.26
East Holland River	0.36	0.12	0.24	1.82	1.32	0.13	0.08	0.83	0.10	0.16	0.10	0.26
Hawkestone Creek	0.19	0.10	0.06	1.82	1.32	0.09	0.10	0.83	0.03	0.04	0.03	0.26
Lovers Creek	0.16	0.07	0.17	1.82	1.32	0.07	0.06	0.83	0.06	0.06	0.05	0.26
Pefferlaw/Uxbridge Brook	0.11	0.06	0.02	1.82	1.32	0.13	0.04	0.83	0.03	0.04	0.04	0.26
Whites Creek	0.23	0.10	0.42	1.82	1.32	0.15	0.08	0.83	0.10	0.11	0.09	0.26
		Ur	nmonit	ored Su	bwater	sheds						
Barrie Creeks	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
GeorginaCreeks	0.36	0.12	0.24	1.82	1.32	0.13	0.08	0.83	0.10	0.16	0.10	0.26
Hewitts Creek	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
Innisfil Creeks	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
Maskinonge River	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
Oro Creeks North	0.36	0.12	0.24	1.82	1.32	0.13	0.08	0.83	0.10	0.16	0.10	0.26
Oro Creeks South	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
Ramara Creeks	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
Talbot/Upper Talbot River	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
West Holland River	0.36	0.12	0.24	1.82	1.32	0.13	0.08	0.83	0.10	0.16	0.10	0.26

Proposed Conditions Phosphorus Budget

Watershed East Holland River

					BMP #1			BMP #2					
Description	Land Cover	TP Loading (kg/ha/yr)	Area (ha)	TP Loading (kg/yr)	BMP	TP Removal Rate (%)	TP Export (kg/yr)	BMP	TP Removal Rate (%)	TP Export (kg/yr)	Combined Removal Efficiency	Unmitigated P _{load} (kg/year)	Mitigated P _{load} (kg/year)
School Block	High Intensity Dev Commercial/Industrial	1.82	3.76	6.843	On-Site Removal	100%	0.000	None	0%	0.000	100%	6.84	0.000
School Block	High Intensity Dev Commercial/Industrial	1.82	0.52	0.946	Underground Storage	25%	0.710	On-Site Removal	100%	0.000	100%	0.95	0.000
Sorbtive Media and Underground Storage	High Intensity Dev Residential	1.32	8.59	11.339	*Sorbtive Media Interceptors	79%	2.381	Underground Storage	25%	1.786	84%	11.34	1.786
SWM Block	High Intensity Dev Residential	1.32	0.33	0.436	Underground Storage	25%	0.327	None	0%	0.327	25%	0.44	0.327
Rear Yards	High Intensity Dev Residential	1.32	0.61	0.805	None	0%	0.805	None	0%	0.805	0%	0.81	0.805
		Total	13.81								Total	20.37	2.918
				-								Removal Rate	86%

*Both infiltration and filtration facilities will have 5% iron filing by weight. Therefore they have been calculated as "Sorbtive Media Interceptors".

Lake Simcoe Phosphorous Offsetting Policy Calculation

Phosphorus Export =	2.92	kg/yr			
Offset Ratio =	2.5	:1			
Offsetting Value =	\$ 35,770.00	/kg/year			
Offsetting Cost =	\$ 260,920.78				
Administration Fee =	15%				
	\$ 39,138.12				

TOTAL PHOSPHORUS OFFSETTING FEE = \$ 300,058.89

Sorbtive media

What is it?

Sorbtive MediaTM is an oxide-based, high surface area reactive engineered media that absorbs and retains large amounts of dissolved phosphorus. It does not desorb (leach) pollutants and has a low total phosphorus effluent concentration (< 0.1 mg/L). Sorbtive MediaTM controls phosphorus by two mechanisms: 1. Physical filtration is the removal of particulate-bound phosphorus and sediment, and

- 2. Sorption is the physio-chemical removal of dissolved phosphorus (the biologically available portion).^[1].

How is it being used?

Imbrium's Sorbtive MediaTM webpage provides links to technical specificationss and design help, along with highlights of multiple projects where the product has been used for phosphorus removal.^[2]

Granular Sorptive MediaTM

At the Sturgeon Meadows Stormwater Management Facility in Learnington, Ontario, Sorbtive MediaTM was applied as a retrofit component to enhance pollutant removal withing an existing dry pond as part of a treatment train. A 30 cm layer was applied within retrofitted trenches in combination with washed stone and rip rap rock to manage the expected treatment flow.

The Rumble Pond Retrofit project in Richmond Hill, Ontario used Sorbtive MediaTM in combination with permeable interlocking pavers to enhance overall capacity of the pervious pavers.

A partnership between Credit Valley Conservation and the University of Guelph completed a project at the IMAX Corporation headquarters in which Sorbtive MediaTM was used downstream of a bioretention cell to provide tertiary nutrient treatment.

A project at Mayville Park in Upstate New York used six retrofit filtration cells surrounding draining inlets near a community centre, which previously had no stormwater treatment on-site. [1] In addition to these projects included on their website, Sorbtive MediaTM was installed at the Colony Trail retrofit in East Gwillimbury. The Imbrium Sorbtive MediaTM chamber removed an average of 66 % of dissolved phosphate from the site. [3]

Benefits

A pilot study was undertaken by researchers at Fleming College in Ontario, Canada to assess the phosphorus removal performance of bioretention soil mix amended with Sorbtive Media. Five bioretention cells were constructed and filled with a soil mix comprised of sand, peat moss, and various percentages of Sorbtive MediaTM. Batches of artificial stormwater containing differing concentrations of phosphorus were used to simulate storm events on the bioretention cells. Through analysis of the influent and effluent concentrations, it was determined that the amended bioretention cells demonstrated substantial improvement in phosphorus removal. Each of the amended cells maintained removal efficiency of up to 99 % and at least 84 % for the duration of the study, even when blended into the soil mix at only 3 - 5 % volume basis. [4]

- 1. Imbrium Stormwater Treatment Solutions. Sorbtive Media. http://www.imbriumsystems.com/stormwater-treatment-solutions/sorbtive-media. Accessed October 6, 2017
- 2. Imbrium Systems. 2017. Sorptive Media. https://www.imbriumsystems.com/stormwater-treatment-solutions/sorbtive-media
- 3. Lake Simcoe Region Conservation Authority (LSRCA). Showcasing Water Innovation: Stormwater Performance Monitoring Report. 2013. http://www.lsrca.on.ca/Shared%20Documents/reports/swi_monitoring_2013.pdf. Accessed October 6, 2017.
- 4. Balch G. Broadbent H, Wootton B, Collins S. Phosphorus Removal Performance of Bioretention Soil Mix Amended with Imbrium Systems Sorbtive Media. 2013. Centre for Alternative Wastewater Treatment, in association with Fleming College. http://www.imbriumsystems.com/Portals/0/documents/sm/technical_docs/Fleming%20College%20CAWT%20Report%20on%20Sorbtive%20Media%20Pe

Retrieved from "https://wiki.sustainabletechnologies.ca/index.php?title=Sorbtive media&oldid=13750"

This page was last edited on 13 May 2022, at 18:19.

Content is available under Creative Commons Attribution 4.0 International License unless otherwise noted

APPENDIX E

LID PRELIMINARY DESIGN

Estimate imperviousness of drainage area from back half of roof draining to rear yard infiltration trenches, using a sample 13.7 m wide lot.

Total Area (1/2 of Lot Depth x Lot Frontage Width) Imp Area (back 1/2 Roof)	13.7 x 15 = (11.9 x 18 x 0.5)	205.50 m ² 107.10 m ²						
Total Imp. Area	· · ·	<u>107.10</u> m ² 52.1%		TABLE 3.2 - WATER QU (FROM MOE SWM PLAN			-	
			Protection Level	SWMP Type	Storage Vo			
Sample Drainage Area	205.5	0.02055 ha/m			35%	55%	70%	85%
				1. Infiltration	25	30	35	40
Required Volume per Hectare (Water Quality Red	quirements)		Enhanced	2. Wetlands	80	105	120	140
(as per Table 3.2, MOE, 2003)	29.0 m ³ /ha		(Level 1)	3. Hybrid Wet Pond/Wetland	110	150	175	195
Required Water Quality Infiltration Volume	0.597 m ³ /Lot			4. Wet Pond	140	190	225	250
				1. Infiltration	20	20	25	30
Required Volume per Hectare (25 mm Storm Red	juirements)		Normal	2. Wetlands	60	70	80	90
as per 25 mm Storm Event	130.3 m ³ /ha		(Level 2)	3. Hybrid Wet Pond/Wetland	75	90	105	120
Required 25 mm Storm Event Volume	2.678 m ³ /Lot			4. Wet Pond	90	110	130	150
				1. Infiltration	20	20	20	20
				2. Wetlands	60	60	60	60
Required Infiltration Trench Volume	2.678 m ³ /Lot		Basic	3. Hybrid Wet Pond/Wetland	60	70	75	80
			(Level 3)	4. Wet Pond	60	75	85	95
				5. Dry Pond (ContinuousFlow)	90	150	200	240

Infiltration Trench Design - Provided

	Units	Total to Infiltration Trench
D - Depth	m	0.60
W - Width	m	1.0
L - Length	m	11.70
A - Bottom Area	m²	11.7
Total Volume of the Bioswale (i.e. media volume)	m ³	7.0
n - Media Porosity		0.40
Total Runoff Storage Volume of the Trench	m ³	2.81
Total Runoff Storage Volume of the Trench	mm	26.2

Landuse	Area (Ha)	% Imperviousness (TIMP)	Impervious Area (Ha)	TABLE 3.2 - WATER QUALITY STORAGE REQUIREMENTS					
15m ROW	0.07	74%	0.05		(FROM MOE SWM PLA	NNING AND	DESIGN M	ANUAL - 200	3)
SAS Acccess Block	0.02	48%	0.01						
Total	0.09	68%	0.06	Protection Level	SWMP Type	Storage Vo	lume (m ³ /ha) for Impervio	ous Level
						35%	55%	70%	85%
					1. Infiltration	25	30	35	40
				Enhanced	2. Wetlands	80	105	120	140
Required Volume per Hectare (Water Qua	ity Requirements)			(Level 1)	3. Hybrid Wet Pond/Wetland	110	150	175	195
(as per Table 3.2, MOE, 2003)	34.4	⊧ m³/ha			4. Wet Pond	140	190	225	250
Required Water Quality Infiltration Volume	3.064	k m ³			1. Infiltration	20	20	25	30
				Normal	2. Wetlands	60	70	80	90
Required Volume per Hectare (25 mm Sto	rm Requirements)			(Level 2)	3. Hybrid Wet Pond/Wetland	75	90	105	120
as per 25 mm Storm Event	170.4	, m³/ha			4. Wet Pond	90	110	130	150
Required 25 mm Storm Event Volume	15.18	s m ³			1. Infiltration	20	20	20	20
				Dest	2. Wetlands	60	60	60	60
			-	Basic (Level 3)	3. Hybrid Wet Pond/Wetland	60	70	75	80
Required Bioswale Volume	15.184	15.184 m ³			4. Wet Pond	60	75	85	95
					5. Dry Pond (ContinuousFlow)	90	150	200	240

Bioswale Design - Provided

Refer to Figure D.1 and D.2

	Units	Total to Bioswale
D - Depth	m	0.60
W - Width	m	0.5
L - Length	m	106.62
A - Bottom Area	m ²	53.3
Total Volume of the Bioswale (i.e. media volume)	m ³	32.0
n - Media Porosity		0.40
Total Runoff Storage Volume of the Bioswale	m ³	12.79
Total Runoff Storage Volume of the Bioswale	mm/imp. ha	21.1

Based on the maximum dimensions of the bioswale to avoid conflicts with service laterals and utilities in the boulevard, the bioswale provides 21.1 mm/impervious area of storage.

Estimate imperviousness of drainage area from half of the road area and half of the adjacent 13.7m lot draining to bioswale

Total Area (assume 1 m sample section, crown of road to lot split poin	t) 13.5 + 7.25 x 1 =	20.75 m ²						
Imp Area (Roof)	11.9 / 13.7 x 1 x 9 =	7.82 m ²						
Imp Area (Driveway)	6 / 13.7 x 1 x 4.5 =	1.97 m ²						
Imp Area (Sidewalk/Trail/Multi-Use Pathway)		0 m ²						
Imp Area (Pavement+Curb)	3.75 + 0.5 =	4.25 m ²		TABLE 3.2 - WATER QU	JALITY STO	ORAGE RE	QUIREMENT	S
Total Imp. Area		14.04 m ²		(FROM MOE SWM PLAN	NNING AND	DESIGN M	IANUAL - 200	3)
Imperviousness		67.7%	Protection Level	SWMP Type	Storage Vo	olume (m ³ /ha	a) for Impervio	ous Level
					35%	55%	70%	85%
Sample Drainage Area	20.75 m2/m-road	0.002075 ha/m-road		1. Infiltration	25	30	35	40
			Enhanced	2. Wetlands	80	105	120	140
Required Volume per Hectare (Water Quality Requiren	nents)		(Level 1)	3. Hybrid Wet Pond/Wetland	110	150	175	195
(as per Table 3.2, MOE, 2003)	34.2 m ³ /ha			4. Wet Pond	140	190	225	250
Required Water Quality Infiltration Volume	0.071 m ³ /m-road			1. Infiltration	20	20	25	30
			Normal	2. Wetlands	60	70	80	90
Required Volume per Hectare (25 mm Storm Requirem	ients)		(Level 2)	3. Hybrid Wet Pond/Wetland	75	90	105	120
as per 25 mm Storm Event	169.1 m ³ /ha			4. Wet Pond	90	110	130	150
Required 25 mm Storm Event Volume	0.351 m ³ /m-road			1. Infiltration	20	20	20	20
			Desia	2. Wetlands	60	60	60	60
			Basic (Level 3)	3. Hybrid Wet Pond/Wetland	60	70	75	80
Required Bioswale Volume	0.351 m ³ /m-road			4. Wet Pond	60	75	85	95
				5. Dry Pond (ContinuousFlow)	90	150	200	240

Bioswale Design - Provided

	Units	Total to Bioswale
D - Depth	m	0.73
W - Width	m	1.20
L - Length	m	1.00
A - Bottom Area	m²	1.20
Total Volume of the Bioswale (i.e. media volume)	m ³	0.9
n - Media Porosity		0.40
Total Runoff Storage Volume of the Bioswale	m ³	0.35
Total Runoff Storage Volume of the Bioswale	mm	25.0

Based on the maximum dimensions of the bioswale to avoid conflicts with service laterals and utilities in the boulevard, the bioswale provides 25 mm/impervious area of storage.

15m HALF ROW BOULEVARD FILTRATION TRENCH SIZING STREET B

Landuse	Area (Ha)	% Imperviousness (TIMP)	Impervious Area (Ha)						
Singles	0.19	59%	0.11		TABLE 3.2- WATER QU	UALITY STO	ORAGE RE	QUIREMENTS	
Driveway Access to SAS	0.03	48%	0.02						
15m ROW	0.14	67%	0.09		(FROM MOE SWM PLAN	NNING AND	DESIGN M	IANUAL - 2003)
Total	0.36	61%	0.22	Protection Level	SWMP Туре	Storage Vo	olume (m ³ /ha	a) for Imperviou	s Level
						35%	55%	70%	85%
					1. Infiltration	25	30	35	40
				Enhanced	2. Wetlands	80	105	120	14
Required Volume per Hectare (Water Quali	ty Requirements)			(Level 1)	3. Hybrid Wet Pond/Wetland	110	150	175	19:
		3							
(as per Table 3.2, MOE, 2003)	32.0) m³/ha			4. Wet Pond	140	190	225	25
	32.0 11.676				4. Wet Pond 1. Infiltration	140 20	190 20	225 25	
	•=••			Normal					30
Required Water Quality Infiltration Volume	11.676			Normal (Level 2)	1. Infiltration	20	20	25	30 90
Required Water Quality Infiltration Volume Required Volume per Hectare (25 mm Store	11.676 m Requirements)				1. Infiltration 2. Wetlands	20 60	20 70	25 80	30 90 120
Required Water Quality Infiltration Volume Required Volume per Hectare (25 mm Stor as per 25 mm Storm Event	11.676 m Requirements)	5 m ³ ′ m ³ /ha			 Infiltration Wetlands Hybrid Wet Pond/Wetland 	20 60 75	20 70 90	25 80 105	30 90 120 150
Required Water Quality Infiltration Volume Required Volume per Hectare (25 mm Storm as per 25 mm Storm Event	11.676 m Requirements) 152.7	5 m ³ ′ m ³ /ha		(Level 2)	 Infiltration Wetlands Hybrid Wet Pond/Wetland Wet Pond 	20 60 75 90	20 70 90 110	25 80 105 130	250 300 900 120 150 200 600
Required Water Quality Infiltration Volume Required Volume per Hectare (25 mm Storm as per 25 mm Storm Event	11.676 m Requirements) 152.7	5 m ³ ′ m ³ /ha		(Level 2) Basic	 Infiltration Wetlands Hybrid Wet Pond/Wetland Wet Pond Infiltration 	20 60 75 90 20	20 70 90 110 20	25 80 105 130 20	30 90 120 150 20
(as per Table 3.2, MOE, 2003) Required Water Quality Infiltration Volume Required Volume per Hectare (25 mm Stor as per 25 mm Storm Event Required 25 mm Storm Event Volume Required Filtration Trench Volume	11.676 m Requirements) 152.7	5 m ³ 7 m ³ /ha 7 m ³		(Level 2)	 Infiltration Wetlands Hybrid Wet Pond/Wetland Wet Pond Infiltration Wetlands 	20 60 75 90 20 60	20 70 90 110 20 60	25 80 105 130 20 60	30 90 120 150 20 60

Filtration Trench Design - Provided

	Units	Total to Filtration Trench
D - Depth	m	0.80
W - Width	m	1.25
L - Length	m	112.00
A - Bottom Area	m²	140.0
Total Volume of the Filtration Trench (i.e. stone volume)	m ³	112.0
n - Media Porosity		0.40
Total Runoff Storage Volume of the Filtration Trench	m ³	44.80
Total Runoff Storage Volume of the Filtration Trench	mm	20.1

Based on the maximum dimensions of the filtration trench to avoid conflicts with service laterals and utilities in the boulevard, the filtration trench provides 20.1 mm/impervious area of storage in the ultimate Phase 3 Condition.

Estimate imperviousness of drainage area from roofs, driveway, and road areas draining to filtration trench. Assume a section of road with a 13.7 m frontage lot with a split draining lot on one side.

Total Area Imp Area (Roof) Imp Area (Driveway, including boulevard driveway) Imp Area (Sidewalk, less driveway overlap)	13.7 x 24.25 = 214 x 1/2 = (6 x 6) + (5.5 x 6) = (1.5 x 13.7) - (6 x 1.5)=	$\begin{array}{c} 332.23 \text{ m}^2 \\ 107.00 \text{ m}^2 \\ 69 \text{ m}^2 \\ 11.55 \text{ m}^2 \end{array}$						
Imp Area (Pavement+Curb)	(3.7 + 0.5) x 13.7 =	57.54 m^2		TABLE 3.2 - WATER Q			•	
Total Imp. Area		245.09 m ²	Protection	(FROM MOE SWM PLA)				,
Imperviousness		73.8%	Level	SWMP Type	Storage Vo	lume (m³/ha) for Imperv	ious Level
					35%	55%	70%	85%
Sample Drainage Area	13.7 m2/m-road	0.00137 ha/m-road		1. Infiltration	25	30	35	40
			Enhanced	2. Wetlands	80	105	120	140
Required Volume per Hectare (Water Quality Re	equirements)		(Level 1)	3. Hybrid Wet Pond/Wetland	110	150	175	195
(as per Table 3.2, MOE, 2003)	36.3 m ³ /ha			4. Wet Pond	140	190	225	250
Required Water Quality Infiltration Volume	0.050 m ³ /m-road			1. Infiltration	20	20	25	30
			Normal	2. Wetlands	60	70	80	90
Required Volume per Hectare (25 mm Storm Re	quirements)		(Level 2)	3. Hybrid Wet Pond/Wetland	75	90	105	120
as per 25 mm Storm Event	184.4 m ³ /ha			4. Wet Pond	90	110	130	150
Required 25 mm Storm Event Volume	0.253 m ³ /m-road			1. Infiltration	20	20	20	20
			Basic	2. Wetlands	60	60	60	60
			(Level 3)	3. Hybrid Wet Pond/Wetland	60	70	75	80
Required Filtration Trench Volume	0.253 m ³ /m-road			4. Wet Pond	60	75	85	95
				5. Dry Pond (ContinuousFlow)	90	150	200	240

Filtration Trench Design - Provided

	Units	Total to Filtration Trench
D - Depth	m	0.80
W - Width	m	1.25
L - Length	m	1.00
A - Bottom Area	m²	1.3
Total Volume of the Filtration Trench (i.e. stone volume)	m ³	1.0
n - Media Porosity		0.40
Total Runoff Storage Volume of the Filtration Trench	m ³	0.40
Total Runoff Storage Volume of the Filtration Trench	mm	39.6

Based on the maximum dimensions of the filtration trench to avoid conflicts with service laterals and utilities in the boulevard, the filtration trench provides 39.6 mm/impervious area of storage.

Landuse	Area (Ha)	% Imperviousness (TIMP)	Impervious Area (Ha)						
Townhouses	0.24	0.64	0.16		TABLE 3.2 - WATER Q	UALITY STO	ORAGE RE	QUIREMENT	S
18m ROW + Driveways	0.18	0.75	0.14		(FROM MOE SWM PLA)	NNING AND	DESIGN M	IANUAL - 200	3)
Total	0.42	69%	0.29	Protection Level	SWMP Type	Storage Vo	olume (m ³ /ha	a) for Impervio	ous Level
						35%	55%	70%	859
					1. Infiltration	25	30	35	40
				Enhanced	2. Wetlands	80	105	120	14
Required Volume per Hectare (Water Quality	y Requirements)			(Level 1)	3. Hybrid Wet Pond/Wetland	110	150	175	19
as per Table 3.2, MOE, 2003)	34.5	m³/ha			4. Wet Pond	140	190	225	25
equired Water Quality Infiltration Volume	14.661	m ³			1. Infiltration	20	20	25	30
				Normal	2. Wetlands	60	70	80	90
Required Volume per Hectare (25 mm Storm	n Requirements)			(Level 2)	3. Hybrid Wet Pond/Wetland	75	90	105	12
s per 25 mm Storm Event	171.5	m³/ha			4. Wet Pond	90	110	130	15
equired 25 mm Storm Event Volume	72.80	m ³			1. Infiltration	20	20	20	20
				Deste	2. Wetlands	60	60	60	60
				Basic	3. Hybrid Wet Pond/Wetland	60	70	75	80
equired Bioswale Volume	72.80	m ³		(Level 3)	4. Wet Pond	60	75	85	95
					5. Dry Pond (ContinuousFlow)	90	150	200	24

Bioswale Design - Provided

	Units	Total to Bioswale	
D - Depth	m	0.45	Available Tank Depth per Drawdov
A - Bottom Area	m ²	33.92	
Total Volume of the Bioswale (i.e. media volume)	m ³	14.55	
n - Media Porosity		1.00	
Total Runoff Storage Volume of the Bioswale	m ³	14.55	
Total Runoff Storage Volume of the Bioswale	mm/imp. ha	5.0	

Therefore, the bioswale is sized to provide enough storage to capture runoff from the 5.0 mm Storm Event from the Phase 3 Areas

own Calculations

Estimate imperviousness of drainage area from roofs, driveway, and road areas draining to filtration trench. Assume a section of road with a 13.7 m frontage lot with a split draining lot on one side and front draining lot on the other.

Total Area Imp Area (Roof) Imp Area (Driveway, including boulevard driveway) Imp Area (Sidewalk, less driveway overlap) Imp Area (Pavement+Curb) Total Imp. Area	$13.7 \times 68 =$ $(185 \times 1/2) + (185) =$ $(6 \times 6 \times 2) + (5 \times 6 \times 2) =$ $(1.5 \times 13.7) - (6 \times 1.5) =$ $(8 + 0.5 + 0.5) \times 13.7 =$	931.60 m^2 277.50 m^2 132 m^2 11.55 m^2 123.3 m^2 544.35 m^2		TABLE 3.2 - WATER Q (FROM MOE SWM PLA)			-	
Imperviousness		58.4%	Protection Level	SWMP Type	Storage Vo	lume (m ³ /ha) for Imperviou	s Level
·					35%	55%	70%	85%
Sample Drainage Area	68 m2/m-road	0.0068 ha/m-road		1. Infiltration	25	30	35	40
			Enhanced	2. Wetlands	80	105	120	140
Required Volume per Hectare (Water Quality Re	quirements)		(Level 1)	3. Hybrid Wet Pond/Wetland	110	150	175	195
(as per Table 3.2, MOE, 2003)	31.1 m ³ /ha			4. Wet Pond	140	190	225	250
Required Water Quality Infiltration Volume	0.212 m ³ /m-road			1. Infiltration	20	20	25	30
			Normal	2. Wetlands	60	70	80	90
Required Volume per Hectare (25 mm Storm Re	quirements)		(Level 2)	3. Hybrid Wet Pond/Wetland	75	90	105	120
as per 25 mm Storm Event	146.1 m ³ /ha			4. Wet Pond	90	110	130	150
Required 25 mm Storm Event Volume	0.993 m ³ /m-road			1. Infiltration	20	20	20	20
			Deste	2. Wetlands	60	60	60	60
			Basic	3. Hybrid Wet Pond/Wetland	60	70	75	80
Required Filtration Trench Volume	0.993 m³/m-road		(Level 3)	4. Wet Pond	60	75	85	95
				5. Dry Pond (ContinuousFlow)	90	150	200	240

Filtration Trench Design - Provided

	Units	Total to Filtration Trench
D - Depth	m	0.80
W - Width	m	1.25
L - Length	m	1.00
A - Bottom Area	m²	1.3
Total Volume of the Filtration Trench (i.e. stone volume)	m ³	1.0
n - Media Porosity		0.40
Total Runoff Storage Volume of the Filtration Trench	m ³	0.40
Total Runoff Storage Volume of the Filtration Trench	mm	10.1

Based on the maximum dimensions of the filtration trench to avoid conflicts with service laterals and utilities in the boulevard, the filtration trench provides 10.1 mm/impervious area of storage.

Landuse	Area (Ha)	% Imperviousness (TIMP)	Impervious Area						
Singles	0.67	59%	(Ha) 0.39		TABLE 3.2 - WATER Q	UALITY STO	ORAGE RE	OUIREMENTS	S
Townhouses	0.03	64%	0.02						
23.0m ROW + Driveways	0.99	66%	0.65		(FROM MOE SWM PLAN	NNING AND	DESIGN M	ANUAL - 2003	8)
Total	1.68	63%	1.06	Protection Level	SWMP Type) for Imperviou	·
		•				35%	55%	70%	85%
					1. Infiltration	25	30	35	40
				Enhanced	2. Wetlands	80	105	120	140
Required Volume per Hectare (Water Qual	ity Requirements)			(Level 1)	3. Hybrid Wet Pond/Wetland	110	150	175	195
as per Table 3.2, MOE, 2003)	32.7	7 m³/ha			4. Wet Pond	140	190	225	250
Required Water Quality Infiltration Volume	34.630) m ³			1. Infiltration	20	20	25	30
				Normal	2. Wetlands	60	70	80	90
Required Volume per Hectare (25 mm Stor	m Requirements)			(Level 2)	3. Hybrid Wet Pond/Wetland	75	90	105	120
is per 25 mm Storm Event		1 m ³ /ha		. ,	4. Wet Pond	90	110	130	150
Required 25 mm Storm Event Volume	265.16	3 m ³			1. Infiltration	20	20	20	20
				Dest	2. Wetlands	60	60	60	60
				Basic (Level 3)	3. Hybrid Wet Pond/Wetland	60	70	75	80
		3		(Level 5)	4. Wet Pond	60	75	85	95
Required Filtration Trench Volume	265.16	5 m ²			4. Wet Polid	00	15	83	93

Filtration Trench Design - Provided

	Units	Total to Filtration Trench
D - Depth	m	0.80
W - Width	m	1.25
L - Length	m	221.98
A - Bottom Area	m²	277.5
Total Volume of the Filtration Trench (i.e. stone volume)	m³	222.0
n - Media Porosity		0.40
Total Runoff Storage Volume of the Infiltration/Filtration Trench	m ³	88.79
Total Runoff Storage Volume of the Infiltration/Filtration Trench	mm/imp. ha	8.4

Based on the maximum dimensions of the filtration trench to avoid conflicts with service laterals and utilities in the boulevard, the filtration trench provides 8.4 mm/impervious area of storage in the ultimate Phase 3 condition.

Infiltration Drawdown

	Units	Total to Infiltration Trench	Notes
P - Percolation Rate	mm/h	9	per Infiltration Rate Testing Memo (WSP Ju
n - Media Porosity		0.96	(Greenstorm Storage Void Ratio)
t - Detention Time	h	48	
D - Maximum Depth of Infiltration Trench	m	0.450	$D = \frac{P * t}{SF * n * 1000}$

Therefore, the required infiltration volume will occur in the bottom 0.45m of the facility, to ensure drawdown within 48 hours.

Shining Hill Estates Phase 3 Project Number: 2183 Date: September 2022 Designer Initials: MECM

July 14, 2022)

APPENDIX F

DETENTION STORAGE PRELIMINARY DESIGN

Water Quality and Extended Detention Sizing - Outlet 2

EXTENDED DETENTION			
Using the 25mm - 4 hour Chicago Storm			
	Erosion Control Volume (V) = Ru	noff Depth (mm) x Dr	ainage Area (ha) x 10 (m ³) / (mm)(ha)
	Erosion Control Volume (V) =	<mark>11.4</mark> mm x	2.17 ha x 10 m ³ / mm⋅ha
I	Erosion Control Volume (V) =	247 m ³	
Peak Flowrate (Q _p) =	Extended Detention Volume (m ³) /	Detention Time (hr) >	< 1 (hr) / 3600 (s) x 1.5 (peaking factor)
Peak Flowrate (Q _p) =	247 m ³	/ 24	hr x 1 (hr) / 3600 (s) x 1.5 (peaking factor
	Peak Flowrate (Q _p) =	0.004 m³/s]

Shining Hill PH3 (Aurora) Project Number: 2183 Date: September 2022 Designer Initials: MECM

or)

Weighted Impervious Calculation

Catchment ID	Total Area	Imperviousness	Impervious Area
	(ha)	(%)	(ha)
203	2.95	62	1.83
204	0.55	62	0.34
Total	3.50	62	2.17

Water Quality and Extended Detention Sizing - Outlet 4

EXTENDED DETENTION			
Using the 25mm - 4 hour Chicago Storm			
	Erosion Control Volume (V) = Run	off Depth (mm) x Dra	ainage Area (ha) x 10 (m³) / (mm)(ha)
	Erosion Control Volume (V) =	<mark>11.81</mark> mm x	<mark>3.50</mark> ha x 10 m ³ / mm⋅ha
	Erosion Control Volume (V) =	413 m ³	
Peak Flowrate $(Q_p) =$	Extended Detention Volume (m ³) / Det	ention Time (hr) x 1	(hr) / 3600 (s) x 1.5 (peaking factor)
Peak Flowrate $(Q_p) =$	413 m ³	/ 24	hr x 1 (hr) / 3600 (s) x 1.5 (peaking fac
[Peak Flowrate (Q _p) =	0.007 m³/s	

Shining Hill PH3 (Aurora) Project Number: 2183 Date: September 2022 Designer Initials: ETCK

actor)

Permanent Pool and Extended Detention Sizing - Outlet 5

Weighted Impervious Calculation

Catchment ID	Total Area	Imperviousness	Impervious Area
	(ha)	(%)	(ha)
201	1.68	82	1.38
202	0.26	63	0.16
208	1.41	65	0.92
EXT1	0.52	66	0.34
Total	3.87	72	2.80

Water Quality and Extended **Detention Sizing - Outlet 5**

EXTENDED DETENTION						
Using the 25mm - 4 hour Chicago Storm						
	Erosion Control Volume (V) =	Runoff Depth (mm) x Dra	ainage Area	a (ha) x 10 (m ³)	/ (mm)(ha)
	Erosion Control Volume (V) =	17.03	mm x	3.87	ha x 10 m ³ / m	ım∙ha
E	Erosion Control Volume (V) =	659	m ³			
Peak Flowrate $(Q_p) =$	Extended Detention Volume (m ³	³) / Detention T	ïme (hr) x	1 (hr) / 36	00 (s) x 1.5 (pe	aking factor)
Peak Flowrate $(Q_p) =$	659	m ³ /	24	hr x 1 (h	nr) / 3600 (s) 🛛 🛪	1.5 (peaking factor
	Peak Flowrate (Q _p) =	0.011	m³/s]		

Shining Hill PH3 (Aurora) Project Number: 2183 Date: September 2022 Designer Initials: MECM

or)

APPENDIX G

SANITARY FLOW CALCULATIONS

Sanitary Design Sheet - Option 1 Downstream Analysis of Willow Farm & Heatherfield Sewers Shining Hill Estates Phase 3 (Aurora) - FSSR Aurora, York Region

										/	0													
Minimum Sewer Diameter (mm) =	200	Avg. Dom	estic Flow	(l/cap/day) =	400											Project No.	. 2183							
Mannings n =	0.013	In	filtration R	ate (l/s/ha) =	0.26											Date:	1-Sep-22							
Minimum Velocity (m/s) =	0.60	Max. Ha	rmon Peak	ing Factor =	4.0											Designed By:	E.T.C.K.							
Maximum Velocity (m/s) =	3	Min. Ha	rmon Peak	ing Factor =	2.0											Reviewed By:	S.E.K.							
Minimum Pipe Slope (%) =	1.00	NOMI	NAL PIPE	SIZE USED													P:\2183 Shining Hill Estates\Design\Pipe Design\Sanitary\FSSR Phase 3\[2183 Sanitary-Aurora only.xlsm]Design							
LOCATION						RESI	DENTIAL			FLOW CALCULATIONS								PIPE DATA						
	MAN	HOLE		ACCUM.		DEN	ISITY	RESIDENTIAL	ACCUM.		TOTAL	AVG.	ACCUM. AVG.	PEAKING	PEAKED	ICI	TOTAL		PIPE		FULL FLOW	FULL FLOW		
STREET	FROM	то	AREA	AREA	UNITS	PER UNIT	PER HA	POPULATION	RESIDENTIAL POPULATION	INFILTRATION	ACCUM. POPULATION	DOMESTIC FLOW	DOMESTIC FLOW	FACTOR	RESIDENTIAL FLOW	FLOW	FLOW	LENGTH	DIAMETER	SLOPE	CAPACITY	VELOCITY		
			(ha)	(ha)	(#)	(p/unit)	(p/ha)			(L/s)		(L/s)	(L/s)		(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(L/s)	(m/s)		
Townhouse Residential	MH1	MH99	0.75	0.75	21	3.5		74	74	0.2	74	0.3	0.3	4.00	1.4	0.0	1.6	100.0	200	1.00	32.8	1.04		
Neighbourhood Park	MH2	MH99	1.6	1.6	0		50	80	80	0.4	80	0.4	0.4	4.00	1.5	0.0	1.9	100.0	200	1.00	32.8	1.04		
Single Family Residential	MH3	MH99	6.98	6.98	87	3.8		331	331	1.8	331	1.5	1.5	4.00	6.1	0.0	7.9	100.0	200	1.00	32.8	1.04		
St. Anne's School	MH4	MH99	4.28	4.28	800	1		800	800	1.1	800	3.7	3.7	3.86	14.3	0.0	15.4	100.0	200	1.00	32.8	1.04		
Phase 3 Connection	MH99	MH69A	0	13.61	0			0	1284	3.5	1284	0.0	5.9	3.73	22.2	0.0	25.7	100.0	200	1.90	45.2	1.44		
Phase 2 External	ext3	MH69A	9.32	9.32	92	3.8		350	350	2.4	350	1.6	1.6	4.00	6.5	0.0	8.9	46.8	200	2.04	46.8	1.49		
Willow Farm Lane	MH69A	MH68A	0	22.93	0			0	1634	6.0	1634	0.0	7.6	3.65	27.6	0.0	33.6	46.8	200	2.04	46.8	1.49		
External to Willow Farm	ext4	MH63A	53.93	53.93	302	3.8		1148	1148	14.0	1148	5.3	5.3	3.76	20.0	0.0	34.0	100.0	250	1.00	59.4	1.21		
Willow Farm Lane (south)	MH63A	MH64A	0.54	54.47	12	1		12	1160	14.2	1160	0.1	5.4	3.76	20.2	0.0	34.3	100.0	250	0.40	37.6	0.77		
Willow Farm Lane	MH68A	MH64A	1.95	24.88	19	1		19	1653	6.5	1653	0.1	7.7	3.65	27.9	0.0	34.4	48.2	200	4.95	72.9	2.32		
Heatherfield Lane	MH64A	MH65A	0.11	79.46	0			0	2812	20.7	2812	0.0	13.0	3.47	45.1	0.0	65.8	76.3	300	0.40	61.1	0.86		
Heatherfield Lane	MH65A	MH66A	0.64	80.1	15	1		15	2827	20.8	2827	0.1	13.1	3.46	45.3	0.0	66.2	73.5	300	0.40	61.1	0.86		
Heatherfield Lane	MH66A	MH67A	1.04	81.14	15	1		15	2842	21.1	2842	0.1	13.2	3.46	45.6	0.0	66.7	29.6	300	0.48	67.0	0.95		
Easement	MH67A	MH74A	0	81.14	0			0	2842	21.1	2842	0.0	13.2	3.46	45.6	0.0	66.7	49.7	300	0.47	66.3	0.94		
Easement	MH74A	MH73A	0	81.14	0			0	2842	21.1	2842	0.0	13.2	3.46	45.6	0.0	66.7	55.2	300	1.00	96.7	1.37		
Easement	MH73A	MH72A	0	81.14	0			0	2842	21.1	2842	0.0	13.2	3.46	45.6	0.0	66.7	27.1	300	2.03	137.7	1.95		
St. John's Sideroad	MH72A	MH71A	0.8	81.94	1	3.8		4	2846	21.3	2846	0.0	13.2	3.46	45.6	0.0	66.9	102.7	300	0.42	62.6	0.89		
St. John's Sideroad	MH71A	MH70A	3.63	85.57	1	3.8		4	2850	22.2	2850	0.0	13.2	3.46	45.7	0.0	67.9	89.9	300	0.46	65.6	0.93		
St. John's Sideroad	MH70A	MH70C	0	85.57	0			0	2850	22.2	2850	0.0	13.2	3.46	45.7	0.0	67.9	7.0	300	0.46	65.6	0.93		
Yonge Street	MH70C	MH70B	0.08	85.65	0			0	2850	22.3	2850	0.0	13.2	3.46	45.7	0.0	67.9	43.0	300	0.44	64.1	0.91		

Project: Shining Hill Estates

Mannings n =0.013Minimum Velocity (m/s) =0.60Maximum Velocity (m/s) =3Minimum Pipe Slope (%) =1.00LOCATIONMANHULESTREETSTREETMANHIMH1MH1Neighbourhood ParkMH2MH2MH3Single Family ResidentialMH3MH4MH3St. Anne's SchoolMH4Phase 3 ConnectionMH99MH4MH6AMilow Farm LaneMH69AWillow Farm Lane (south)MH63AMilow Farm Lane (south)MH63AMilow Farm LaneMH64AMilow Farm LaneMH65AMilow Farm	Inf Max. Ha Min. Ha NOMII	filtration Ra armon Peak armon Peak NAL PIPE AREA (ha) 0.75	(l/cap/day) = ate (l/s/ha) = ing Factor = ing Factor = SIZE USED ACCUM. AREA (ha)	0.26 4.0 2.0	RESIDE	INTIAL									Project No. Date:									
Minimum Velocity (m/s) =0.601Maximum Velocity (m/s) =3Minimum Pipe Slope (%) =1.00LOCATIONMANHOLESTREETMANHOLETownhouse ResidentialMH1MNeighbourhood ParkMH2MSingle Family ResidentialMH3MSt. Anne's SchoolMH4MPhase 3 ConnectionMH99MIPhase 2 Externalext3MIWillow Farm LaneMH69AMIWillow Farm Lane (south)MH63AMIWillow Farm LaneMH64AMIHeatherfield LaneMH65AMIHeatherfield LaneMH65AMIHeatherfield LaneMH66AMIEasementMH67AMIKasementMH67AMI	Max. Ha Min. Ha NOMII E TO MH99 MH99	rmon Peak nrmon Peak NAL PIPE AREA (ha) 0.75	ing Factor = ing Factor = SIZE USED ACCUM. AREA (ha)	4.0 2.0		INTIAL									Date:	1-Sep-22								
Maximum Velocity (m/s) =3Minimum Pipe Slope (%) =1.00LOCATIONMANHOLEMANHOLESTREETMANHOLETownhouse ResidentialMH1MNeighbourhood ParkMH2MSingle Family ResidentialMH3MSt. Anne's SchoolMH4MPhase 3 ConnectionMH99MIPhase 3 ConnectionMH69AMIWillow Farm LaneMH69AMIExternal to Willow Farmext3MIWillow Farm Lane (south)MH63AMIWillow Farm LaneMH64AMIHeatherfield LaneMH65AMIHeatherfield LaneMH65AMIEasementMH67AMIEasementMH67AMI	Min. Ha NOMII E TO MH99 MH99	nmon Peaki NAL PIPE AREA (ha) 0.75	ing Factor = SIZE USED ACCUM. AREA (ha)	2.0		ENTIAL					Date: 1-Sep-22													
Minimum Pipe Slope (%) =1.00LOCATIONMANHOLESTREETMANHOLESTREETFROMMHOLTownhouse ResidentialMH1MNeighbourhood ParkMH2MSingle Family ResidentialMH3MSt. Anne's SchoolMH4MPhase 3 ConnectionMH99MIPhase 2 Externalext3MIWillow Farm LaneMH69AMIWillow Farm Lane (south)MH63AMIWillow Farm LaneMH64AMIHeatherfield LaneMH65AMIHeatherfield LaneMH65AMIHeatherfield LaneMH67AMIEasementMH67AMI	NOMI E TO MH99 MH99	AREA (ha) 0.75	SIZE USED ACCUM. AREA (ha)			NTIAL				Designed By: E.T.C.K.														
LOCATIONMANHOLESTREETMANHOLESTREETFROMTownhouse ResidentialMH1MMeighbourhood ParkMH2MSingle Family ResidentialMH3MSt. Anne's SchoolMH4MPhase 3 ConnectionMH99MPhase 3 ConnectionMH99MPhase 2 Externalext3MWillow Farm LaneMH69AMWillow Farm Lane (south)MH63AMWillow Farm LaneMH68AMHeatherfield LaneMH65AMHeatherfield LaneMH65AMHeatherfield LaneMH66AMEasementMH67AMEasementMH67AM	е то МН99 МН99	AREA (ha) 0.75	ACCUM. AREA (ha)			INTIAL				Reviewed By: S.E.K.														
MANHOLESTREETFROMTownhouse ResidentialMH1MNeighbourhood ParkMH2MSingle Family ResidentialMH3MSt. Anne's SchoolMH4MPhase 3 ConnectionMH99MHPhase 2 Externalext3MHWillow Farm LaneMH69AMHWillow Farm Lane (south)MH63AMHWillow Farm LaneMH68AMHHeatherfield LaneMH65AMHHeatherfield LaneMH66AMHEasementMH67AMHEasementMH67AMHMEasementMH74AMH	то МН99 МН99	(ha) 0.75	AREA (ha)	UNITS		INTIAL										P:\	2183 Shining Hill Estate	Shining Hill Estates\Design\Pipe Design\Sanitary\FSSR Phase 3\[2183 Sanitary-Aurora only-proposed.xlsm]De						
STREETFROMTownhouse ResidentialMH1MNeighbourhood ParkMH2MSingle Family ResidentialMH3MSt. Anne's SchoolMH4MPhase 3 ConnectionMH49MPhase 2 Externalext3MIWillow Farm LaneMH69AMIWillow Farm Lane (south)MH63AMIWillow Farm LaneMH63AMIHeatherfield LaneMH64AMIHeatherfield LaneMH65AMIEasementMH67AMIEasementMH67AMIEasementMH74AMI	то МН99 МН99	(ha) 0.75	AREA (ha)	UNITS	DENS							FLOW CALCU	LATIONS					PIPE DATA						
FROMFROMTownhouse ResidentialMH1MNeighbourhood ParkMH2MSingle Family ResidentialMH3MSt. Anne's SchoolMH4MPhase 3 ConnectionMH99MHPhase 2 Externalext3MHWillow Farm LaneMH69AMHWillow Farm Lane (south)MH63AMHWillow Farm LaneMH63AMHHeatherfield LaneMH65AMHHeatherfield LaneMH65AMHEasementMH67AMHEasementMH67AMHMH74AMH74AMH	MH99 MH99	(ha) 0.75	AREA (ha)	UNITS	-	SITY	RESIDENTIAL	RESIDENTIAL ACCUM.		TOTAL	AVG.	ACCUM. AVG.	PEAKING	PEAKED	ICI	TOTAL		PIPE	~~~~~	FULL FLOW	FULL FLO			
Townhouse ResidentialMH1MNeighbourhood ParkMH2MSingle Family ResidentialMH3MSt. Anne's SchoolMH4MPhase 3 ConnectionMH99MIPhase 2 Externalext3MIWillow Farm LaneMH69AMIWillow Farm Lane (south)MH63AMIWillow Farm LaneMH63AMIHeatherfield LaneMH65AMIHeatherfield LaneMH65AMIEasementMH67AMIEasementMH67AMIEasementMH74AMI	MH99 MH99	0.75			PER UNIT	PER HA	POPULATION	RESIDENTIAL POPULATION	INFILTRATION	ACCUM. POPULATION	DOMESTIC FLOW	DOMESTIC FLOW	FACTOR	RESIDENTIAL FLOW	FLOW	FLOW	LENGTH	DIAMETER	SLOPE	CAPACITY	VELOCIT			
Neighbourhood ParkMH2MH2Single Family ResidentialMH3MSt. Anne's SchoolMH4MPhase 3 ConnectionMH99MIPhase 2 Externalext3MIWillow Farm LaneMH69AMIExternal to Willow Farmext4MIWillow Farm Lane (south)MH63AMIWillow Farm LaneMH64AMIHeatherfield LaneMH65AMIHeatherfield LaneMH65AMIEasementMH67AMIEasementMH74AMI	MH99			(#)	(p/unit)	(p/ha)			(L/s)		(L/s)	(L/s)		(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(L/s)	(m/s)			
Single Family ResidentialMH3MH3Single Family ResidentialMH3MH4St. Anne's SchoolMH4MPhase 3 ConnectionMH99MIPhase 2 Externalext3MIWillow Farm LaneMH69AMIExternal to Willow Farmext4MIWillow Farm Lane (south)MH63AMIWillow Farm LaneMH68AMIHeatherfield LaneMH64AMIHeatherfield LaneMH65AMIEasementMH67AMIEasementMH74AMI		1.0	0.75	21	3.5	-	74	74	0.2	74	0.3	0.3	4.00	1.4	0.0	1.6	100.0	200	1.00	32.8	1.04			
St. Anne's SchoolMH4MPhase 3 ConnectionMH99MIPhase 2 Externalext3MIWillow Farm LaneMH69AMIExternal to Willow Farmext4MIWillow Farm Lane (south)MH63AMIWillow Farm LaneMH68AMIHeatherfield LaneMH64AMIHeatherfield LaneMH65AMIEasementMH67AMIEasementMH74AMI	MH99	1.6	1.6	0		50	80	80	0.4	80	0.4	0.4	4.00	1.5	0.0	1.9	100.0	200	1.00	32.8	1.04			
Phase 3 ConnectionMH99MHPhase 2 Externalext3MHWillow Farm LaneMH69AMHExternal to Willow Farmext4MHWillow Farm Lane (south)MH63AMHWillow Farm LaneMH63AMHHeatherfield LaneMH64AMHHeatherfield LaneMH65AMHHeatherfield LaneMH65AMHEasementMH67AMHEasementMH74AMH		6.98	6.98	87	3.8		331	331	1.8	331	1.5	1.5	4.00	6.1	0.0	7.9	100.0	200	1.00	32.8	1.04			
Phase 2 Externalext3MIWillow Farm LaneMH69AMIExternal to Willow Farmext4MIWillow Farm Lane (south)MH63AMIWillow Farm LaneMH63AMIHeatherfield LaneMH64AMIHeatherfield LaneMH65AMIHeatherfield LaneMH66AMIEasementMH67AMI	MH99	4.28	4.28	800	1		800	800	1.1	800	3.7	3.7	3.86	14.3	0.0	15.4	100.0	200	1.00	32.8	1.04			
Willow Farm LaneMH69AMHExternal to Willow Farmext4MHWillow Farm Lane (south)MH63AMHWillow Farm LaneMH68AMHHeatherfield LaneMH64AMHHeatherfield LaneMH65AMHHeatherfield LaneMH65AMHEasementMH67AMHEasementMH74AMH	MH72A	0	13.61	0			0	1284	3.5	1284	0.0	5.9	3.73	22.2	0.0	25.7	100.0	200	1.90	45.2	1.44			
Willow Farm LaneMH69AMHExternal to Willow Farmext4MHWillow Farm Lane (south)MH63AMHWillow Farm LaneMH68AMHHeatherfield LaneMH64AMHHeatherfield LaneMH65AMHHeatherfield LaneMH65AMHEasementMH67AMHEasementMH74AMH	MH69A	9.32	9.32	92	3.8		350	350	2.4	350	1.6	1.6	4.00	6.5	0.0	8.9	46.8	200	2.04	46.8	1.49			
Willow Farm Lane (south)MH63AMIWillow Farm LaneMH68AMIHeatherfield LaneMH64AMIHeatherfield LaneMH65AMIHeatherfield LaneMH66AMIEasementMH67AMIEasementMH74AMI	MH68A	0	9.32	0			0	350	2.4	350	0.0	1.6	4.00	6.5	0.0	8.9	46.8	200	2.04	46.8	1.49			
Willow Farm LaneMH68AMHHeatherfield LaneMH64AMHHeatherfield LaneMH65AMHHeatherfield LaneMH66AMHEasementMH67AMHEasementMH74AMH	MH63A	53.93	53.93	302	3.8		1148	1148	14.0	1148	5.3	5.3	3.76	20.0	0.0	34.0	100.0	250	1.00	59.4	1.21			
Heatherfield LaneMH64AMHHeatherfield LaneMH65AMHHeatherfield LaneMH66AMHEasementMH67AMHEasementMH74AMH	MH64A	0.54	54.47	12	1		12	1160	14.2	1160	0.1	5.4	3.76	20.2	0.0	34.3	100.0	250	0.40	37.6	0.7			
Heatherfield LaneMH65AMHHeatherfield LaneMH66AMHEasementMH67AMHEasementMH74AMH	MH64A	1.95	11.27	19	1		19	369	2.9	369	0.1	1.7	4.00	6.8	0.0	9.8	48.2	200	4.95	72.9	2.3			
Heatherfield LaneMH66AMHEasementMH67AMHEasementMH74AMH	MH65A	0.11	65.85	0			0	1528	17.1	1528	0.0	7.1	3.67	26.0	0.0	43.1	76.3	300	0.40	61.1	0.8			
EasementMH67AMHEasementMH74AMH	MH66A	0.64	66.49	15	1		15	1543	17.3	1543	0.1	7.1	3.67	26.2	0.0	43.5	73.5	300	0.40	61.1	0.8			
Easement MH74A MI	MH67A	1.04	67.53	15	1		15	1558	17.6	1558	0.1	7.2	3.67	26.5	0.0	44.0	29.6	300	0.48	67.0	0.9			
	MH74A	0	67.53	0			0	1558	17.6	1558	0.0	7.2	3.67	26.5	0.0	44.0	49.7	300	0.47	66.3	0.94			
	MH73A	0	67.53	0			0	1558	17.6	1558	0.0	7.2	3.67	26.5	0.0	44.0	55.2	300	1.00	96.7	1.3			
Easement MH73A MI	MH72A	0	67.53	0			0	1558	17.6	1558	0.0	7.2	3.67	26.5	0.0	44.0	27.1	300	2.03	137.7	1.93			
St. John's Sideroad MH72A MI	MH71A	0.8	81.94	1	3.8		4	2846	21.3	2846	0.0	13.2	3.46	45.6	0.0	66.9	102.7	300	0.42	62.6	0.8			
St. John's Sideroad MH71A MI		3.63	85.57	1	3.8		4	2850	22.2	2850	0.0	13.2	3.46	45.7	0.0	67.9	89.9	300	0.46	65.6	0.93			
St. John's Sideroad MH70A MI	MH70A	0	85.57	0			0	2850	22.2	2850	0.0	13.2	3.46	45.7	0.0	67.9	7.0	300	0.46	65.6	0.9			

																						eviewed By:			
																	P:\2	183 Shining	Hill Estates\Des	sign\Pipe Desig	n\Sanitary\FSSR	Phase 3\[2	2183 St Johns SR Sanitary	HGL-aurora	a.xlsm]Design
LOCATION			INVI	ERTS	FLOW				PIPE I	DATA					PIPE LO	SS CALCU	LATIONS		MH LOSS CA	LCULATIONS	TOTAL LOSS]	HYDRAULIC GRADE LI	INE	
STREET	FROM (U/S)	TO (D/S)	U/S	D/S	TOTAL PIPE FLOW (Qdes)	DIAMETER		MANNING's 'n'	PIPE AREA	HYD. RAD ^{2/5}		Qcap.	Qdes/Qcap	L/D	f	Vf	V ² /2g	TOTAL PIPE LOSS	MH LOSS	PIPE BEND LOSS	TOTAL LOSS	HGL (U/S)	HGL SURCHARGE ABOVE U/S OBV.	(D / S)	MH TOP (U/S)
			(m)	(m)	(L/s)	(mm)	(m)		(m2)		(%)	(L/s)	(%)					(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)
St. John's Sideroad	MH72A	MH71A	246.889	246.458	66.9	300	102.7	0.013	0.071	0.178	0.42	62.6	1.07	342.333	0.031	0.946	0.046	0.492	0.03	0.00	0.52	247.308	0.118	246.786	248.79
St. John's Sideroad	MH71A	MH70A	246.454	246.041	67.9	300	89.9	0.013	0.071	0.178	0.46	65.6	1.04	299.500	0.031	0.961	0.047	0.443	0.00	0.00	0.45	246.786	0.032	246.341	249.31
St. John's Sideroad	MH70A	MH70C	246.030	245.998	67.9	300	7.0	0.013	0.071	0.178	0.46	65.6	1.04	23.333	0.031	0.961	0.047	0.035	0.00	0.00	0.04	246.341	0.010	246.304	248.20
Yonge Street	MH70C	MH70B	245.969	245.780	67.9	300	43.0	0.013	0.071	0.178	0.44	64.1	1.06	143.333	0.031	0.961	0.047	0.212	0.01	0.00	0.22	246.304	0.035	246.080	249.00

Sanitary Sewer Hydraulic Grade Line Analysis Shining Hill Estates Phase 3 (Aurora) - FSSR Aurora, York Region

Project: Shining Hill Estates Project No. 2183 Date: 01-Sep-22

Designed By: ETCK Reviewed By: SEK

APPENDIX H

WATER DISTRIBUTION ANALYSIS LETTER

June 14, 2022

Project No. 17002-102

Sent via email Mr. Paul Bailey Shining Hill Estate Collection Inc. 2235 Sheppard Avenue East, Suite 903 Toronto, ON M2J 5B5

Subject: Shining Hill Phase 3 Development Water Distribution Modeling – Revision 1 Town of Aurora, Region of York

Dear Mr. Bailey,

We are pleased to submit our report entitled "Shining Hill Phase 3 Development Watermain Analysis" outlining the results of our water distribution analysis for the proposed residential development in the Town of Aurora, Region of York. This report has been updated to eliminate the future connection to the Newmarket system at the request of the Town.

A WaterCAD model of the immediate area was developed utilizing the design information provided to Municipal Engineering Solutions and a hydrant test performed by The Ontario Clean Water Agency in April 2021. The findings of our analysis are summarized in the following report.

We trust you find this report satisfactory. Should you have any questions or require further clarification, please call.

Yours truly,

Municipal Engineering Solutions

Kristin St-Jean, P.Eng. /KS

File Location: C:\Users\krist\Documents\Projects\17002-102 Shining Hill, Aurora\5.0 Report\2022-06 Report Update\17002-102 Shining Hill Phase 3 Development Watermain Analysis_20220614.docx

55 Gilbank Drive, Aurora, Ontario L4G 6H9

Tel: 905.726.1016 Cell: 416.434.0186 Fax: 905.726.1225

SHINING HILL PHASE 3 DEVELOPMENT

WATERMAIN ANALYSIS

PREPARED BY:

MUNICIPAL ENGINEERING SOLUTIONS

FOR:

SHINING HILL ESTATE COLLECTION INC. Updated June 2022

Project Number: 17002-102

TABLE OF CONTENTS

SECTION 1 – INTRODUCTION	1
1.1 Development Background	1
Figure 1 – Proposed Shining Hill Phase 3 Development1	
SECTION 2 – WATERMAIN DESIGN CRITERIA	2
2.1 Equivalent Population Densities & Water Design Factors	2
Table 1 – Equivalent Population Density2	
Table 2 - Water Design Factors	
SECTION 3 –FLOW DEMANDS	2
3.1 Equivalent Population Flow Demands	2
Table 3 – Water Demand for the Shining Hill Phase 3 Development	
3.2 Fire Flow Demands	3
Table 4 - Fire Flow Requirements	
SECTION 4 – OTHER SYSTEM REQUIREMENTS	3
4.1 System Pressure Requirements	3
4.2 Watermain Sizing	3
4.3 Watermain C-Factor	4
Table 5 - Hazen-Williams Coefficient of Roughness (C-Factors)4	
SECTION 5 – ANALYSIS & MODELING RESULTS	4
5.1 Model Setup	4
5.2 Watermain Sizing and System Pressures	5
Table 6 - Modeled Service Pressures5	
SECTION 6 – CONCLUSIONS/RECOMMENDATIONS	5

APPENDICES

Appendix A	Demands
Appendix B	Boundary Information
Appendix C	Model Results Phase 3A (Interim)
Appendix D	Model Results Phase 3 (Ultimate)

Section 1 – INTRODUCTION

Municipal Engineering Solutions ("MES") was retained by Shining Hill Estate Collection Inc. to conduct a hydraulic water analysis for the proposed development located on the north side of St. John's Sideroad, west of Yonge Street in the Town of Aurora (Region of York). As part of this hydraulic assessment MES was requested to undertake the following:

- 1. Calculate/verify water demands for the proposed development using Town of Aurora, provincial and industry design standards;
- 2. Add the subject watermains/development to the development water model;
- 3. Run the model to size the subject mains to achieve service criteria during Average Day, Peak Hour and fire flow during Maximum Day demand; and
- 4. Prepare a Report summarizing the modeling results for agency review and design purposes.

1.1 Development Background

The development site is located on the north side of St. John's Sideroad (north of Willow Farm Lane) and west of Yonge Street in the Town of Aurora. The proposed development is made up of 87 single family detached homes and 21 townhouses. The existing building located at the west end of this development will be redeveloped into a school, which will be serviced from the proposed watermains.

The development will be built in two phases. The first phase of the development (Phase 3A), will service the school building only. This in an interim condition for approximately one year until the remainder of the development is built (Phase 3). The breakdown of the buildings is shown in **Appendix A**. The proposed development is shown below on **Figure 1**.

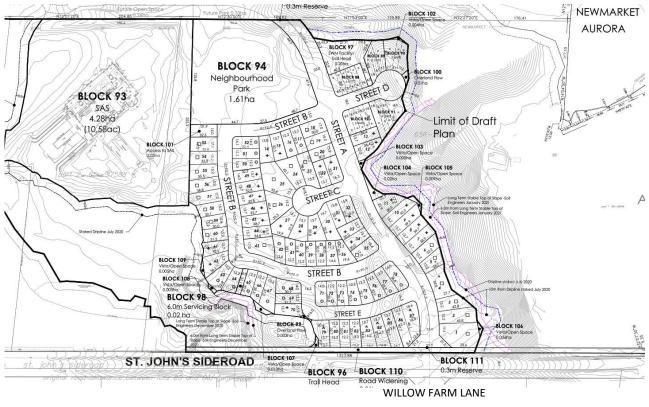


Figure 1 – Proposed Shining Hill Phase 3 Development

Section 2 – WATERMAIN DESIGN CRITERIA

The design criteria utilized to estimate the water demands for the hydraulic water model follows general industry standards and is calculated using the design criteria and guidelines outlined in the Town of Aurora Design Criteria and the Ministry of the Environment, Conservation and Parks (MECP) Watermain Design Criteria.

The following sections summarize the specific design criteria used to carry out the hydraulic watermain assessment for this development.

2.1 Equivalent Population Densities & Water Design Factors

To calculate the equivalent population and water design factors for this development MES used Town of Aurora standard demand rates as noted in the *Design Criteria Manual for Engineering Plans (June 2021)*. The ultimate population of the school is estimated to be 800 people (staff and students). **Table 1** summarizes the residential population densities and **Table 2** summarizes the average daily demand and peaking factors used for the calculations.

Type of Development	Equivalent Population (Persons/Unit)						
Single Detached Dwellings	3.8						
Townhouses	3.5						
Source: Design Criteria Manuel for Engineering Diane June 2024							

Table 1 – Equivalent Population Density

Source: Design Criteria Manual for Engineering Plans, June 2021

Type of Development	Average Daily Demand	Maximum Daily Demand Peaking Factor	Peak Hourly Demand Peaking Factor
Residential	400 l/capita/day	2.0	3.0

Source: Town of Aurora Design Criteria Manual, June 2021

Section 3 – FLOW DEMANDS

Utilizing the demand criteria and the Average Day, Maximum Day and Peak Hour peaking factors from Table 1 the water demands for this development were calculated.

3.1 Equivalent Population Flow Demands

The calculated demands for the development are summarized in **Table 3**. The domestic water demands for the school were calculated by GEI Consultants and provided to MES for inclusion in the model and are attached in **Appendix A**. During the interim condition (year 1) it is anticipated that the school population will be lower than the ultimate population used in the calculations. For additional details on the development water demands and assigned demand nodes used in the water model see **Appendix A**.

Table 3 – Water Dem	and for the Shining Hill	Phase 3 Development
---------------------	--------------------------	---------------------

	Average Day	Maximum Day	Peak Hour
	Demand (L/s)	Demand (L/s)	Demand (L/s)
Phase 3 Total (Including School)	5.48	10.24	23.67

3.2 Fire Flow Demands

The fire flow demands for the development were taken from the Town of Aurora *Design Criteria Manual for Engineering Plans (June 2021)*. The fire flow requirement for the existing/proposed school building was provided to MES by GEI Consultants (GEI, February 2022) and is calculated to be 233 L/s using the Fire Underwriters Survey (FUS). This is below the minimum required fire flow for schools of 250 L/s as per the Town's Criteria. As such, the minimum fire flow requirement used in this analysis was based on the Town of Aurora Design Criteria. The minimum required fire flows assumed for this development are summarized in **Table 4**.

Type of Development	Fire Flow (L/s)	
Single Family Homes	117	
Townhouses	125	
School	250	

Source: Town of Aurora Design Criteria Manual, June 2021

The fire flows utilized in this analysis are based on the Town's minimum fire flow requirements. The fire flows noted in Table 4 must be reviewed and confirmed by the appropriate designer (architect) with detailed design data (floor area and type of construction) for the buildings and confirmed with the Town prior to implementation and construction. For the residential buildings, a greater fire flow than currently noted within the Town's Criteria may be required or the fire flows may need to be calculated using the Fire Underwriters Survey. Regardless, the residential buildings, school retrofits and school servicing will all need to be designed to suit the available flow and pressure. Any design/criteria changes are to be reported to MES.

Section 4 – OTHER SYSTEM REQUIREMENTS

4.1 System Pressure Requirements

In addition to meeting the various flow requirements, the system must also satisfy minimum and maximum pressure requirements as outlined by the Town. The Town's pressure requirements are outlined in the Design Criteria and stipulate the following:

- 1. The pressure range during maximum daily demand shall be 350 kPa to 620 kPa (50 to 90 psi)
- 2. The maximum system pressure under static load or during minimum hourly demand shall be 700 kPa (100 psi).
- 3. The minimum pressure during peak hourly demand shall be 275 kPa (40 psi).
- 4. The minimum system pressure when the system is tested for fire flow during maximum day demands shall be 140 kPa (20 psi).

To comply with the Ontario Building Code, reduction of pressures to 550 kPa (80 psi) is required, normally by having reducing valves installed on individual services.

4.2 Watermain Sizing

The Town of Aurora stipulates a minimum pipe size of 200 mm for residential areas and 250 mm diameter for industrial, commercial and institutional areas. (For cul-de-sacs only, a 150 mm watermain may be permitted at the discretion of the Town.) All watermains are adequately sized to maintain demand flows at the required pressures without causing

excessive energy loss or result in water quality decay. The watermain system must therefore be designed to accommodate the greater of the following:

- Maximum day plus fire demand
- Peak hour demand

For distribution systems providing fire protection the minimum pipe size shall be 150 mm diameter in accordance with Ministry of the Environment, Conservation and Parks (MECP) and NFPA requirements.

To provide appropriate fire protection, reliable supply and pressures the water distribution system should be looped wherever possible to improve supply security and water quality.

4.3 Watermain C-Factor

In designing and modeling of the pipes the Coefficient of Roughness (C-Factor) factors from the Town's Design Criteria were utilized. The Coefficient of Roughness assigned to each pipe size is summarized in **Table 5** below.

Size of Pipe (Diameter in mm)	Coefficient of Roughness (C)	
150 mm	100	
200 mm to 250 mm	110	
300 mm	120	
400 mm to 450 mm	130	
600 mm or Greater	140	

Table 5 - Hazen-Williams Coefficient of Roughness (C-Factors)

Source: Town of Aurora Design Criteria Manual, June 2021

Section 5 – ANALYSIS & MODELING RESULTS

In order to conduct the hydraulic water analysis for the proposed development the water demands were estimated by MES using the design criteria previously discussed and incorporated into a WaterCAD model created for the immediate area using boundary conditions from a hydrant test. The following sections discuss the model setup and results.

5.1 Model Setup

A hydrant test was performed on St. John's Sideroad by The Ontario Clean Water Agency on April 28th, 2021. The hydrant test results are included in **Appendix B**.

The development is located in the Aurora Central (Zone 1) Pressure District. The proposed water supply for the development is from two connections to the existing 300 mm/200mm diameter watermain on St. John's Sideroad.

The proposed school is a retrofit on an existing building which is currently serviced by a 200 mm diameter watermain, connected to the existing system at St. John's Sideroad. The first phase of the development would be to construct the proposed 300 mm diameter watermain along Street A and Street B to service the school.

Friction factor for all new pipes added to the model were assigned according to Table 5. Fire flows were based on the Town of Aurora Design Criteria. Elevations within the development vary from approximately 262.1 m to 270.0 m.

5.2 Watermain Sizing and System Pressures

The analysis was conducted under existing servicing conditions for Average Day, Maximum Day, Peak Hour and Maximum day plus Fire demands to size the watermains and meet the pressure requirements. The pipe sizes and layout are shown in **Appendix A**.

Modeled service pressures for the development are summarized in **Table 6**. All pressures lie within the required operating range under average day, maximum day, maximum day plus fire flow and peak hour demands. The modelling indicates that pressures are not expected to exceed 550 kPa within the proposed development. Since modeling was done using a single demand scenario for boundary conditions (hydrant test), it is anticipated that pressures will be lower during peak hour and higher during minimum hour than indicated in the modeling.

Detailed pipe and node tables for the various scenarios modeled are attached to this report in **Appendix C** for Phase 3A (Interim) and **Appendix D** for Phase 3 (Ultimate).

Scenario	Average Day	Maximum Day	Peak Hour	Max. Day + Fire
Phase 3A	401 kPa	401 kPa	399 kPa	224 L/s
(School only)	(58.2 psi)	(58.2 psi)	(57.9 psi)	@ 140 kPa
Phase 3	401 – 525 kPa	401 – 524 kPa	400 – 524 kPa	118 to 354 L/s
(Ultimate)	(58.2 to 76.1 psi)	(58.1 to 76.1 psi)	(58.0 to 76.0 psi)	@ 140 kPa

Table (6 -	Modeled	Service	Pressures
Tuble (modeled	0011100	110000100

The maximum available fire flow for the school site (at the property line) is summarized in **Table 7** for both interim (Phase 3A) and ultimate (Phase 3) conditions.

Scenario	Fire Flow Required	Fire Flow Available	Are Fire Flow Conditions Met?
Phase 3A (School only)	250 L/s	224 L/s	NO**
Phase 3 (Ultimate)	250 L/s	278 L/s	YES**

** Based on the assumption that the required fire flow by the architect/Town is 250 L/s

The available fire flow is lower than the minimum required fire flow during the interim condition. This is a temporary condition for approximately one year, until the remainder of the development is built. The temporary fire flow deficiency must be approved by the Town of Aurora and Central York Fire Services. The internal piping and sprinkler systems for the school will need to be designed to suit the available flow and pressure for both the interim and ultimate conditions.

This report provides the available flow and pressure to the property line of the school site only and does not address or comment on the adequacy of the domestic and/or fire water supply to the school building.

Section 6 – CONCLUSIONS/RECOMMENDATIONS

The proposed watermain layout for the Shining Hill Phase 3 Development can achieve hydraulic requirements as prescribed by the Town of Aurora watermain design criteria as summarized below.

 The service pressures from the proposed watermain layout are expected to range between 399 kPa to 525 kPa (57.9 psi to 76.1 psi).

- The available fire flow meets or exceeds the minimum fire flow demands utilized for this assessment at the minimum pressure of 140 kPa for the residential areas. Assumptions made within this report must be confirmed when additional building information becomes available.
- The available fire flow for the school site is lower than the minimum required fire flow during the interim condition. This is a temporary condition for approximately one year, until the remainder of the development is built. The temporary fire flow deficiency must be approved by the Town of Aurora and Central York Fire Services.
- Once the building designs are completed and the specifics are known, the fire flow demands used in this analysis and summarized in Table 4, including all assumptions, must be reviewed and confirmed by the designer(s), architect and mechanical consultant to ensure the fire flows used within this report are still valid prior to implementation and construction and to confirm that the water supply is adequate.
- The fire flows utilized in this analysis are based on the Town's minimum fire flow requirements. Should it be determined, based on the final site and building design, that a greater fire flow is required or that the fire flows need to be calculated using the Fire Underwriters Survey formula the pipe sizes may need to be upsized to suit the higher fire flows or the building construction designed to suit the flow available.
- The minimum required fire flow for the school was assumed to be 250 L/s as per the Town's Criteria. The required fire flow for the school building must be confirmed by the Town and the school architect. Regardless, the building will need to be designed to suit the available flow and pressure. Any design/criteria changes are to be reported to MES.
- Confirmation and/or changes to the criteria should also be provided to and reviewed with MES prior to the finalization of the detailed design drawings and construction of the watermain system. Final design parameters are to be provided to MES prior to construction for further review to confirm that the actual (final) site conditions and building design(s) reflect those modeled by MES within this report.
- The hydrant test used for the boundary conditions provides a snapshot of the system performance and does not capture the system variation as accurately as boundary information from a calibrated model or system monitoring. The Town of Aurora must confirm that the results presented in this report are in keeping with the pressures currently measured in the area.
- This report, including all modeling assumptions used, is to be submitted to and reviewed by the water operating authority (municipality) to confirm that the modeling parameters used are acceptable to the operating authority and/or confirm if modified domestic or fire flow requirements are required or should be implemented for this particular development.

Appendix A

D e m a n d s

Town of Aurora Design Criteria Manual of Engineering Plans, June 2021 (unless otherwise stated)

Equivalent Population by Unit

Tune of Development	Equivalent Population Density		
Type of Development	(Person/Unit)		
Single Family Homes/Semi-Detached	3.8		
Townhouses	3.5		
Apartments	2.5		

Water Design Factors

Average Daily Demand (litres/capita/day)	400
Maximum Daily Demand P.F.	2.00
Peak Hourly Demand P.F.	3.00

Coefficient of Roughness

Size of Pipe (mm Dia.)	Coefficient of Roughness (C)
150	100
200-250	110
300	120
400-450	130
Over 600	140

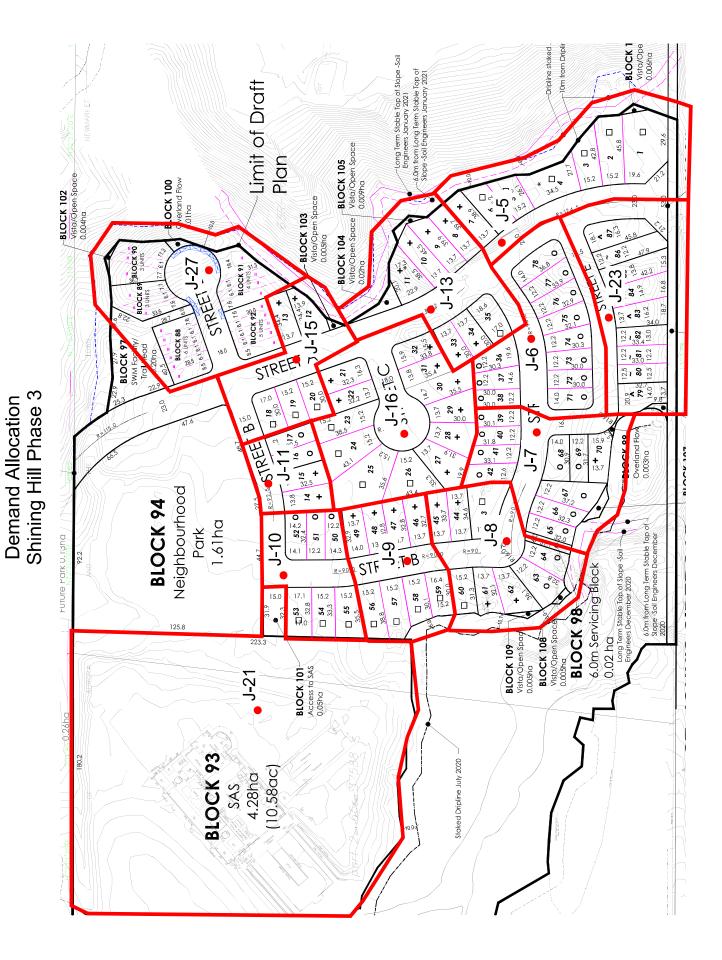
Minimum Pipe Size

Type of Development	Size of Pipe (mm Dia.)
Residential	200
Industrial/Commercial/Institutional	250

(For cul-de-sacs only, a 150mm watermain may be permitted at the discretion of the Town.)

Working Pressures

Parameter	Pressure			
Normal Conditi	on			
Minimum Pressure (Maximum Day)	275 kPa (40 psi)			
Normal Operating Pressure (Maximum Day)	350 kPa to 620 kPa (50 to 90 psi)			
Maximum (Building Code)	550 kPa (80 psi)			
Maximum recommended	700 kPa (100 psi)			
Fire Flow Condition	ons			
Minimum Pressure	140 kPa (20 psi)			


Fire Flow Demands

Type of Development	Fire Demand (L/s)		
Single Family/Semi-Detached	117		
Townhouse/Row House	125		
Apartment	150		
Commercial	200		
Institutional/Industrial	250		

	Ту	pe of Developi	nent	Equivalent	Equivalent Population		Demands	
Node	Detached	Townhouse	Institutional	Total Population	Total Population	Avg Day	Max Day	Peak Hour
	(units)	(units)	(people)	(Residential)	(ICI)	(L/s)	(L/s)	(L/s)
J-5	7			27	0	0.12	0.24	0.36
J-6	11			42	0	0.19	0.38	0.57
J-7	10			38	0	0.18	0.36	0.54
J-8	8			30	0	0.14	0.28	0.42
J-9	8			30	0	0.14	0.28	0.42
J-10	6			23	0	0.11	0.22	0.33
J-11	4			15	0	0.07	0.14	0.21
J-13	7			27	0	0.12	0.24	0.36
J-15	5			19	0	0.09	0.18	0.27
J-16	12			46	0	0.21	0.42	0.63
J-21			800	0	800	3.61 *	6.50 *	18.06 *
J-23	9			34	0	0.16	0.32	0.48
J-27		21		74	0	0.34	0.68	1.02
TOTAL	87	21	800	404	800	5.48	10.24	23.67

* Received from GEI Consultants, February 2022

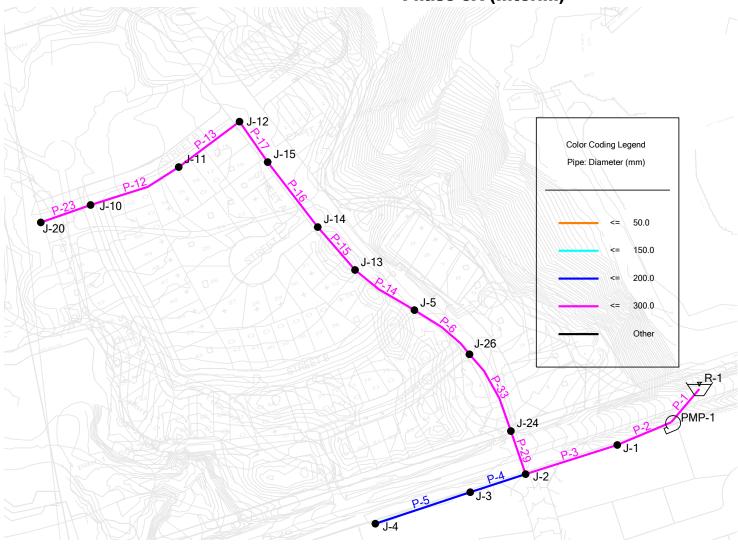
					D	OMESTIC	WATER	DEMAN	
(\bigcirc)		Project Name:		St. Anne's Schoo					
		Prepared by:			Trevor Van Lierop				
GEI 🐸		Date:			Feb)-22			
Consultants		Site Component	School						
Note:		Students	650						
Based on the Town of Newmarket Design		People per unit	1.00						
Criteria		Faculty	150						
		People per unit	1.00						
	Residential								
	Occupancy								
	Data								
	Commercial								
	Commercial Occupancy Data								
Unit Quantity by Site Component	Water Demand	Units			Equivalent Popu	lation (persons)			
Residential Occupancies									
School	390	L/person/day	800.0			-	-	-	
Not Used	-	-	-			-	-	-	
Not used	-	-	-			-	-	-	
Other Occupancies					Flow Ra	tes (L/d)			
Not used	-	-	-	-	-	-	-	-	
Not used	-	-	-	-	-	-	-	-	
Not used	-	-	-	-	-	-	-	-	
		Dail	y Flow Rate (L/c	1)					
Residential Occupancies									
School		312,000.00	312,000.00						
Not Used									
Not used									
Other Occupancies									
Not used		0	0						
Not used		0	0						
Not used		0	0						
		Total Flow							
Average day (L/d)		312,000	312,000						
Average day (L/s)		3.61	3.61						
Max. day (L/d)		561,600	561,600						
Min. hour (L/hr)		8,450	8,450						
Peak hour (L/hr)		65,000	65,000						
Peak hour (L/s)		18.06	18.06						
						Peaking	Factors		
					Land Use	Minimum Hour	Peak Hour	Maximum Da	
					Residential Commercial /	0.65	5.00	1.80 1.80	

\bigcirc						FIRE FLO	OW CALC	JLATION
	Project Name:		St. Anne's Schoo		Project No.	2100)423	
				Trevor Van Lierop				
Consultants	Date:			Feb	-22			
Fire Resistive Construction:	No	Site Component:	Existing Building	Loading Area	Athletics Centre	Academic Building	Residence (nearest to Loading Area)	
Note: Based on the City of Vaughan Design		Largest Floor Area (m2)	1369.67	327.16	2086.05	927.51	240	
Based on the City of Vaughan Design Standards	Total Floor Area	Area Above (m2)	1369.67	0	1278.5	927.51	240	
	Total Floor Area	Area Below (m2)	0	0	0	927.51	240	
		Total Floor Area (m2)	2739	327	3365	2783	360	
		C (dimensionless)	1.0	1.0	1.0	1.0	1.0	
	Flow	A (m2)	2739	327	3365	2783	360	
$F = 220C \sqrt{A}$	(F)	F (L/min)	12000	4000	13000	12000	4000	
$F = 220C \sqrt{A}$			•					
		F (L/min)	12000	4000	13000	12000	4000	
F = Required fire flow L/min	Reduction	f ₁ (dimensionless)	1.00	1.00	1.00	1.00	0.85	
C = Coefficient related to construction	Factor	$F' = F x f_f (L/min)$	12000	4000	13000	12000	3400	
$A = Total area in m^2$		f ₁ = occupancy factor; ie, Residential, f ₁ = 0.85; for Retail or Commercial, f ₁ = 1.00						
		f ₂ (sprinkler factor)	30%	30%	30%	30%	30%	
		North Side	25%	25%	0%	25%	25%	
	Sprinkler and	East Side	0%	20%	0%	0%	5%	
	Exposure Increase	South Side	25%	25%	25%	0%	25%	
'Calculations, formulas and factors are as per	or Decrease	West Side	0%	0%	15%	0%	0%	
Fire Underwriter's Survey (FUS) Water Supply for Public Fire Protection		f ₃	50%	70%	40%	25%	55%	
		f ₃ = Exposure factor not to	exceed 75%, deter	mined as per FUS	Guide Item 4, page	18)		
	F' (L/min)				13000	12000	3400	
	/min) ; ₂ (L/min)		12000 3600	4000	3900	3600	1020	
	₂ (L/min) ₃ (L/min)					3000		
	3 (4/1111)		6000	2800	5200	3000	1870	
F"=F'-S+E (L/min) rou	inded to nearest 1	,000	14000	6000	14000	11000	4000	
F''(L/s)		233	100	233	183	67	
F''(US	F"(USGPM)			1590	3700	2910	1060	

Sprinkler Reduction Factor (f ₂)							
No Sprkinkler System	Sprinklered	Sprink. + Supervised					
0%	30%	50%					

Table 2							
Construction Type "C" Factor							
Wood Ordinary Non- Frame Construction Combustible Fire Resistive							
1.5	1	0.80	0.60				

Table 3


Occupancy Factor (f ₁)							
Rapid Burning Free Burning Combustible Limited Combustible Non-Combust							
25%	15%	0%	-15%	-25%			

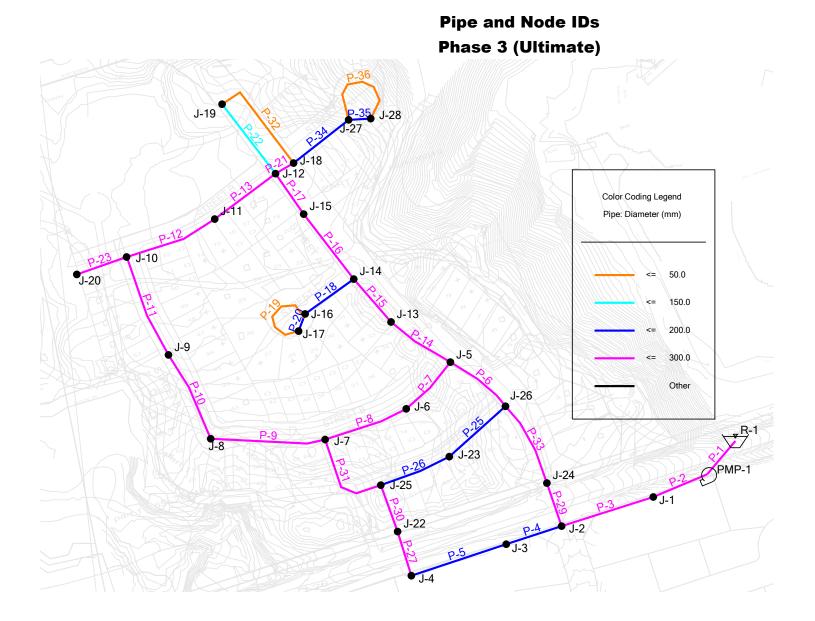

Table 4

Table 4								
Exposure Charge								
0 to 3m 3.1 to 10m 10.1 to 20m 20.1 to 30m 30.1 to 45m > 45m								
25%	20%	15%	10%	5%	0			

https://geiconsultant.sharepoint.com/sites/MunicipalProjects/Shared Documents/General/01_Client/St. Annes School/Design/01_Design Docs/Calcs/Water Calcs/[2100423-SP-Dom & Fire.xlsx]1. Domestic Water Demand

Pipe and Node IDs Phase 3A (Interim)

Appendix B

Boundary Information

HYDRANT INSPECTION & FLOW REPORT

Prepared By: The Ontario Clean Water Agency Prepared For: Bazil Developments Attn Paul Bailey Test Hydrant Andrew Cruickshank Flow Hydrant(s) Sergio Mailhos, Cody Flatt

6582 gpm @ 20 psi (138 kPa)

CLASS AA

SUGGESTED NFPA RATING

BLUE

Date: 28-Apr-21 Time: 8:47 AM

HYDRANT DESCRIPTION

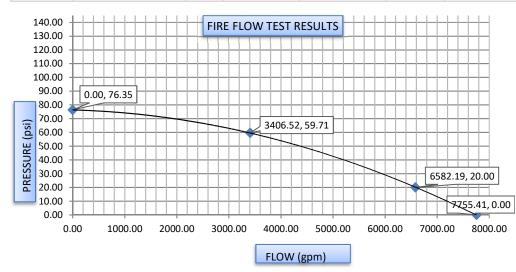
Hydrant ID:	5070-07	Side of Street:	SOUTH	Make:	Concord	Open Dir:	Left
Address:	St John's Sdrd	- East of Willow Farm L	ane	Model:	D-67M	Latitude:	
Location:	AUF	AURORA ONTARIO			1988	Longitude:	

GENERAL INSPECTION

<u>GENERAL IN</u>	SPECTIO	<u> NC</u>	JOK - Good Conditi		lition FR - Fut	ion FR - Future Repair Required			N/A	A - Not Applicable	CF - Component Failure			
Upper Sectio	n OK	FR	N/A	CF	Mid Section	ОК	FR	N/A	CF	General	ОК	FR	N/A	CF
Bonnet			\checkmark		Port Height			\checkmark		Accessibility			\checkmark	
Operating Nu	t 🗌		\checkmark		Caps / Nozzles			\checkmark		Position / Height			~	
Gaskets / Bol	ts 🗖		\checkmark		Chains			\checkmark		Paint Cond			~	
O-Ring(s)			~		Traffic Flange			_		Drain Ports			7	
Hy	drostatic	Leak Te	esting		<u> </u>	Mainte	nance			Auxiliary / Secondary Valve				
Hydrant	Above	Grade	Leak	N/A	Lubricate	Operat	ing Nut		N/A	Located / Accessible				N/A
Closed	Subs	urface L	.eak	N/A	Lubricate & Cl	ean Noz	zle Thre	eads	N/A	Operate	d/Exer	cised		N/A
Hydrant	Above	Grade	Leak	N/A	Lubricate & 0	Clean Ca	p Threa	nds	N/A	Numbe	er of T	urns		N/A
Open	Subs	urface L	.eak	N/A	Water Remov	Water Removed (if non-draining) N/A			N/A	Open Direction				
Comments:										Auxiliary Valve Loo	cation:			

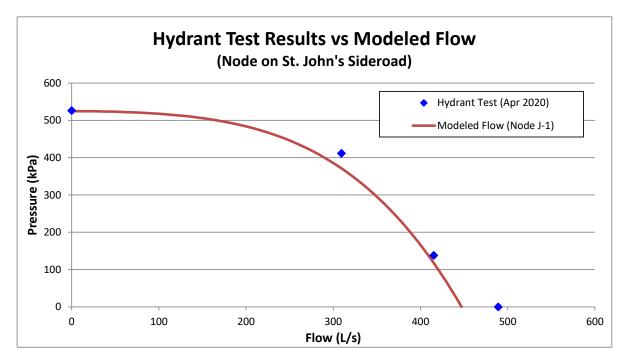
FLUSHING *If hydrants are being flow tested, inspections and flushing are completed prior to testing

Hydrant Operated	Clear Flow Obtained	Cl2 Residual	Time Flushed	Flow	Total Flow	Dechlorinated
Yes - Easily Operated	Yes	N/A	5 minutes	3407 gal	17033 gal	Yes


Comments:

STATIC AFTER FLOW TEST WAS PERFORMED 75.87 PSI

FLOW TESTING *Flow testing results may be from previous year(s). Note date & time


Date: 28-Apr-21 Time: 8:47 AM

	Flow Hydrant									Test Hydrant		
ID	Flow Device Used	Size	Coefficient	Time Flushed	Flow	Total Flow	Pitot	ID	Static	Residual		
5070-14	Pollard Diffuser	2.5"	0.832	5.0 minutes	981 gal	4905 gal	40 psi	5070-07	76.35	59.71		
5070-14	Pollard Diffuser	2.5"	0.832	5.0 minutes	956 gal	4781 gal	38 psi					
5070-10	Pollard Diffuser	2.5"	0.832	3.0 minutes	776 gal	2327 gal	25 psi					
5070-10	Pollard Diffuser	2.5"	0.832	3.0 minutes	694 gal	2081 gal	20 psi					

Calculated Results							
Calculated Flow @ 20 psi	6582 gpm						
Calculated Flow @ 0 psi	7755 gpm						
Pressure Drop	21.79%						

Comments:

	Static Pressure	Residual Pressure	Test Flow	Theoretical Flow at 140 kPa
	(kPa)	(kPa)	(L/s)	(L/s)
Hydrant Test	526.4	411.7	309.5	415.3
Model	524.6	407.9	283.9	410.1

Appendix C

Model Results Phase 3A (Interim)

	N	ode Table		
ID	Demand	Elevation	Head	Pressure
IÐ	(L/s)	(m)	(m)	(kPa)
J-1	0.00	257.40	311.00	524.56
J-2	0.00	262.34	311.00	476.21
J-3	0.00	262.80	311.00	471.70
J-4	0.00	262.60	311.00	473.66
J-5	0.00	266.35	311.00	436.94
J-10	0.00	269.50	310.99	406.06
J-11	0.00	269.00	310.99	410.96
J-12	0.00	268.47	310.99	416.16
J-13	0.00	266.95	310.99	431.06
J-14	0.00	267.50	310.99	425.67
J-15	0.00	268.00	310.99	420.76
J-20	3.61	270.00	310.99	401.16
J-24	0.00	262.14	311.00	478.16
J-26	0.00	263.95	311.00	460.43

Ave	rage Day						
			Pipe Ta	ble			
ID	From Node	To Node	Length	Diameter	Roughness	Flow	Velocity
	FIOIII NOUE	TONOUE	(m)	(mm)	(C)	(L/s)	(m/s)
P-1	R-1	PMP-1	32.47	300	120	3.61	0.05
P-2	PMP-1	J-1	43.48	300	120	3.61	0.05
P-3	J-1	J-2	71.56	300	120	3.61	0.05
P-4	J-2	J-3	43.33	200	110	0.00	0.00
P-5	J-3	J-4	74.34	200	110	0.00	0.00
P-6	J-26	J-5	52.99	300	120	3.61	0.05
P-12	J-10	J-11	71.85	300	120	-3.61	0.05
P-13	J-11	J-12	56.46	300	120	-3.61	0.05
P-14	J-5	J-13	53.46	300	120	3.61	0.05
P-15	J-13	J-14	42.21	300	120	3.61	0.05
P-16	J-14	J-15	61.09	300	120	3.61	0.05
P-17	J-15	J-12	36.66	300	120	3.61	0.05
P-23	J-10	J-20	39.25	300	120	3.61	0.05
P-29	J-2	J-24	33.88	300	120	3.61	0.05
P-33	J-24	J-26	65.59	300	120	3.61	0.05

	N	ode Table		
ID	Demand	Elevation	Head	Pressure
	(L/s)	(m)	(m)	(kPa)
J-1	0.00	257.40	311.00	524.54
J-2	0.00	262.34	310.99	476.16
J-3	0.00	262.80	310.99	471.66
J-4	0.00	262.60	310.99	473.62
J-5	0.00	266.35	310.99	436.84
J-10	0.00	269.50	310.97	405.87
J-11	0.00	269.00	310.97	410.79
J-12	0.00	268.47	310.98	416.01
J-13	0.00	266.95	310.98	430.95
J-14	0.00	267.50	310.98	425.55
J-15	0.00	268.00	310.98	420.62
J-20	6.50	270.00	310.97	400.96
J-24	0.00	262.14	310.99	478.10
J-26	0.00	263.95	310.99	460.36

	Maximum Day						
			Pipe Ta	ble			
ID	From Node	To Node	Length	Diameter	Roughness	Flow	Velocity
	FIOIN NOUE	TONOUE	(m)	(mm)	(C)	(L/s)	(m/s)
P-1	. R-1	PMP-1	32.47	300	120	6.50	0.09
P-2	PMP-1	J-1	43.48	300	120	6.50	0.09
P-3	3 J-1	J-2	71.56	300	120	6.50	0.09
P-4	J-2	J-3	43.33	200	110	0.00	0.00
P-5	5 J-3	J-4	74.34	200	110	0.00	0.00
P-6	5 J-26	J-5	52.99	300	120	6.50	0.09
P-12	2 J-10	J-11	71.85	300	120	-6.50	0.09
P-13	3 J-11	J-12	56.46	300	120	-6.50	0.09
P-14	4 J-5	J-13	53.46	300	120	6.50	0.09
P-1	5 J-13	J-14	42.21	300	120	6.50	0.09
P-10	6 J-14	J-15	61.09	300	120	6.50	0.09
P-1	7 J-15	J-12	36.66	300	120	6.50	0.09
P-23	3 J-10	J-20	39.25	300	120	6.50	0.09
P-29	9 J-2	J-24	33.88	300	120	6.50	0.09
P-33	3 J-24	J-26	65.59	300	120	6.50	0.09

	N	ode Table		
ID	Demand	Elevation	Head	Pressure
	(L/s)	(m)	(m)	(kPa)
J-1	0.00	257.40	310.98	524.34
J-2	0.00	262.34	310.95	475.77
J-3	0.00	262.80	310.95	471.27
J-4	0.00	262.60	310.95	473.23
J-5	0.00	266.35	310.91	436.06
J-10	0.00	269.50	310.81	404.25
J-11	0.00	269.00	310.83	409.36
J-12	0.00	268.47	310.85	414.72
J-13	0.00	266.95	310.89	430.03
J-14	0.00	267.50	310.88	424.51
J-15	0.00	268.00	310.86	419.43
J-20	18.06	270.00	310.79	399.23
J-24	0.00	262.14	310.94	477.63
J-26	0.00	263.95	310.92	459.71

F	Peak Hour						
		•	Pipe Ta	ble			
ID	From Node	To Node	Length	Diameter	Roughness	Flow	Velocity
			(m)	(<i>mm</i>)	(C)	(L/s)	(m/s)
P-1	R-1	PMP-1	32.47	300	120	18.06	0.26
P-2	PMP-1	J-1	43.48	300	120	18.06	0.26
P-3	J-1	J-2	71.56	300	120	18.06	0.26
P-4	J-2	J-3	43.33	200	110	0.00	0.00
P-5	J-3	J-4	74.34	200	110	0.00	0.00
P-6	J-26	J-5	52.99	300	120	18.06	0.26
P-12	J-10	J-11	71.85	300	120	-18.06	0.26
P-13	J-11	J-12	56.46	300	120	-18.06	0.26
P-14	J-5	J-13	53.46	300	120	18.06	0.26
P-15	J-13	J-14	42.21	300	120	18.06	0.26
P-16	J-14	J-15	61.09	300	120	18.06	0.26
P-17	J-15	J-12	36.66	300	120	18.06	0.26
P-23	J-10	J-20	39.25	300	120	18.06	0.26
P-29	J-2	J-24	33.88	300	120	18.06	0.26
P-33	J-24	J-26	65.59	300	120	18.06	0.26

	Fire Flow Table							
ID	Fire Flow Demand (L/s)	Total Demand (L/s)	Total Available Flow (L/s)	Available Fire Flow (L/s)	Fire Flow Met?			
J-20	250.00	256.50	230.16	223.66	FALSE			

Maximum Day - Phase 3A (Interim) **Available Fire Flow** Color Coding Legend Color Coding Legend J-12 251 L/s Junction: Satisfies Fire Flow Constraints? Pipe: Diameter (mm) J-15 258 L/s J-11 241 L/s True False <= 50.0 • J-10 150.0 <= 229 L/s J-14 270 L/s J-20 224 L/s <= 200.0 J-13 ●279 L/s 300.0 <= Other J-5 ●292 L/s J-26 ●306 L/s R-1 PMP-1 J-24 324 L/s J-1 357 L/s J-2 335 L/s J-3 278 L/s J-4 202 L/s

Appendix D

Model Results Phase 3 (Ultimate)

Results (Phase 3 - Ultimate) Shining Hill Phase 3 Development, Aurora June 2022

Node Table								
ID	Demand	Elevation	Head	Pressure				
U	(L/s)	(m)	(m)	(kPa)				
J-1	0.00	257.40	311.00	524.55				
J-2	0.00	262.34	310.99	476.18				
J-3	0.00	262.80	310.99	471.67				
J-4	0.00	262.60	310.99	473.61				
J-5	0.12	266.35	310.99	436.91				
J-6	0.19	266.44	310.99	436.02				
J-7	0.18	265.92	310.99	441.11				
J-8	0.14	265.59	310.99	444.34				
J-9	0.14	268.50	310.99	415.85				
J-10	0.11	269.50	310.99	406.06				
J-11	0.07	269.00	310.99	410.96				
J-12	0.00	268.47	310.99	416.15				
J-13	0.12	266.95	310.99	431.03				
J-14	0.00	267.50	310.99	425.64				
J-15	0.09	268.00	310.99	420.75				
J-16	0.21	267.70	310.99	423.69				
J-17	0.00	267.70	310.99	423.69				
J-18	0.00	268.47	310.99	416.15				
J-19	0.00	267.90	310.99	421.72				
J-20	3.61	270.00	310.99	401.16				
J-22	0.00	263.88	310.99	461.08				
J-23	0.16	265.42	310.99	446.01				
J-24	0.00	262.14	310.99	478.13				
J-25	0.00	264.20	310.99	457.95				
J-26	0.00	263.95	310.99	460.40				
J-27	0.34	268.47	310.99	416.14				
J-28	0.00	268.47	310.99	416.14				

MIN	257.40	401.16
MAX	270.00	524.55

Ave	erage Day							
	Pipe Table							
ID	From Node	To Node	Length	Diameter	Roughness	Flow	Velocity	
	FIOIII NOUE	TO NOUE	(m)	(<i>mm</i>)	(C)	(L/s)	(m/s)	
P-1	R-1	PMP-1	32.47	300	120	5.48	0.08	
P-2	PMP-1	J-1	43.48	300	120	5.48	0.08	
P-3	J-1	J-2	71.56	300	120	5.48	0.08	
P-4	J-2	J-3	43.33	200	110	1.32	0.04	
P-5	J-3	J-4	74.34	200	110	1.32	0.04	
P-6	J-26	J-5	52.99	300	120	3.46	0.05	
P-7	J-5	J-6	48.01	300	120	0.92	0.01	
P-8	J-6	J-7	64.68	300	120	0.73	0.01	
P-9	J-7	J-8	85.51	300	120	2.41	0.03	
P-10	J-8	J-9	70.02	300	120	2.27	0.03	
P-11	J-9	J-10	79.49	300	120	2.13	0.03	
P-12	J-10	J-11	71.85	300	120	-1.59	0.02	
P-13	J-11	J-12	56.46	300	120	-1.66	0.02	
P-14	J-5	J-13	53.46	300	120	2.42	0.03	
P-15	J-13	J-14	42.21	300	120	2.30	0.03	
P-16	J-14	J-15	61.09	300	120	2.09	0.03	
P-17	J-15	J-12	36.66	300	120	2.00	0.03	
P-18	J-14	J-16	44.53	200	110	0.21	0.01	
P-19	J-16	J-17	62.06	50	100	0.00	0.00	
P-20	J-17	J-16	13.67	200	110	0.00	0.00	
P-21	J-12	J-18	15.60	300	120	0.34	0.00	
P-22	J-12	J-19	65.21	150	100	0.00	0.00	
P-23	J-10	J-20	39.25	300	120	3.61	0.05	
P-25	J-23	J-26	56.14	200	110	-0.70	0.02	
P-26	J-25	J-23	55.20	200	110	-0.54	0.02	
P-27	J-4	J-22	34.42	300	120	1.32	0.02	
P-29	J-2	J-24	33.88	300	120	4.16	0.06	
P-30	J-22	J-25	36.66	300	120	1.32	0.02	
P-31	J-25	J-7	68.79	300	120	1.86	0.03	
P-32	J-19	J-18	82.00	50	100	0.00	0.00	
P-33	J-24	J-26	65.59	300	120	4.16	0.06	
P-34	J-18	J-27	52.03	200	110	0.34	0.01	
P-35	J-27	J-28	16.54	200	110	0.00	0.00	
P-36	J-28	J-27	74.31	50	100	0.00	0.00	

Results (Phase 3 - Ultimate) Shining Hill Phase 3 Development, Aurora June 2022

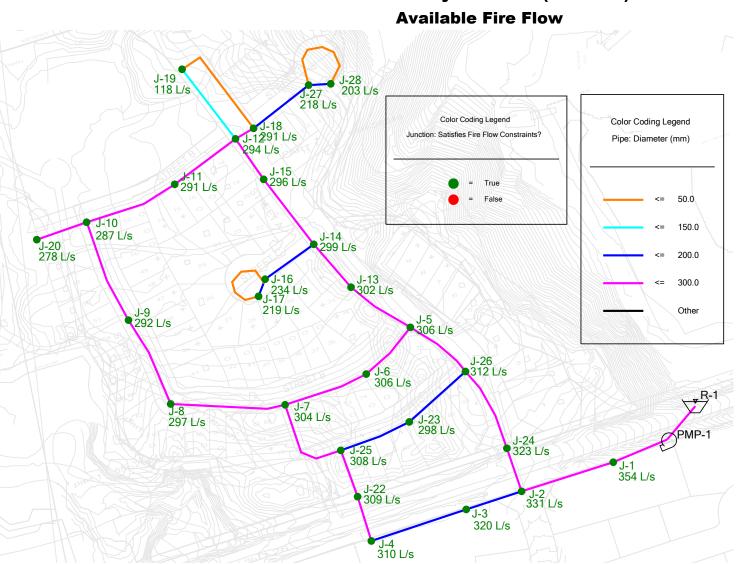
Node Table							
ID	Demand	Elevation	Head	Pressure			
U	(L/s)	(m)	(m)	(kPa)			
J-1	0.00	257.40	310.99	524.49			
J-2	0.00	262.34	310.98	476.07			
J-3	0.00	262.80	310.98	471.54			
J-4	0.00	262.60	310.98	473.45			
J-5	0.24	266.35	310.97	436.74			
J-6	0.38	266.44	310.97	435.85			
J-7	0.36	265.92	310.97	440.94			
J-8	0.28	265.59	310.97	444.15			
J-9	0.28	268.50	310.97	415.66			
J-10	0.22	269.50	310.97	405.86			
J-11	0.14	269.00	310.97	410.76			
J-12	0.00	268.47	310.97	415.95			
J-13	0.24	266.95	310.97	430.85			
J-14	0.00	267.50	310.97	425.46			
J-15	0.18	268.00	310.97	420.56			
J-16	0.42	267.70	310.97	423.50			
J-17	0.00	267.70	310.97	423.50			
J-18	0.00	268.47	310.97	415.95			
J-19	0.00	267.90	310.97	421.53			
J-20	6.50	270.00	310.97	400.95			
J-22	0.00	263.88	310.98	460.92			
J-23	0.32	265.42	310.98	445.85			
J-24	0.00	262.14	310.98	478.01			
J-25	0.00	264.20	310.98	457.78			
J-26	0.00	263.95	310.98	460.25			
J-27	0.68	268.47	310.97	415.95			
J-28	0.00	268.47	310.97	415.95			

MIN	257.40	400.95
MAX	270.00	524.49

Max	kimum Day							
	Pipe Table							
ID	From Node	To Node	Length	Diameter	Roughness	Flow	Velocity	
	From Node	To Node	(m)	(<i>mm</i>)	(C)	(L/s)	(m/s)	
P-1	R-1	PMP-1	32.47	300	120	10.24	0.14	
P-2	PMP-1	J-1	43.48	300	120	10.24	0.14	
P-3	J-1	J-2	71.56	300	120	10.24	0.14	
P-4	J-2	J-3	43.33	200	110	2.47	0.08	
P-5	J-3	J-4	74.34	200	110	2.47	0.08	
P-6	J-26	J-5	52.99	300	120	6.47	0.09	
P-7	J-5	J-6	48.01	300	120	1.72	0.02	
P-8	J-6	J-7	64.68	300	120	1.34	0.02	
P-9	J-7	J-8	85.51	300	120	4.44	0.06	
P-10	J-8	J-9	70.02	300	120	4.16	0.06	
P-11	J-9	J-10	79.49	300	120	3.88	0.05	
P-12	J-10	J-11	71.85	300	120	-2.84	0.04	
P-13	J-11	J-12	56.46	300	120	-2.98	0.04	
P-14	J-5	J-13	53.46	300	120	4.50	0.06	
P-15	J-13	J-14	42.21	300	120	4.26	0.06	
P-16	J-14	J-15	61.09	300	120	3.84	0.05	
P-17	J-15	J-12	36.66	300	120	3.66	0.05	
P-18	J-14	J-16	44.53	200	110	0.42	0.01	
P-19	J-16	J-17	62.06	50	100	0.00	0.00	
P-20	J-17	J-16	13.67	200	110	0.00	0.00	
P-21	J-12	J-18	15.60	300	120	0.68	0.01	
P-22	J-12	J-19	65.21	150	100	0.00	0.00	
P-23	J-10	J-20	39.25	300	120	6.50	0.09	
P-25	J-23	J-26	56.14	200	110	-1.31	0.04	
P-26	J-25	J-23	55.20	200	110	-0.99	0.03	
P-27	J-4	J-22	34.42	300	120	2.47	0.03	
P-29	J-2	J-24	33.88	300	120	7.77	0.11	
P-30	J-22	J-25	36.66	300	120	2.47	0.03	
P-31	J-25	J-7	68.79	300	120	3.45	0.05	
P-32	J-19	J-18	82.00	50	100	0.00	0.00	
P-33	J-24	J-26	65.59	300	120	7.77	0.11	
P-34	J-18	J-27	52.03	200	110	0.68	0.02	
P-35	J-27	J-28	16.54	200	110	0.00	0.00	
P-36	J-28	J-27	74.31	50	100	0.00	0.00	

Results (Phase 3 - Ultimate) Shining Hill Phase 3 Development, Aurora June 2022

Node Table									
ID	Demand	Elevation	Head	Pressure					
שו	(L/s)	(m)	(m)	(kPa)					
J-1	0.00	257.40	310.96	524.18					
J-2	0.00	262.34	310.92	475.48					
J-3	0.00	262.80	310.91	470.84					
J-4	0.00	262.60	310.89	472.57					
J-5	0.36	266.35	310.88	435.81					
J-6	0.57	266.44	310.88	434.92					
J-7	0.54	265.92	310.88	440.00					
J-8	0.42	265.59	310.87	443.13					
J-9	0.42	268.50	310.86	414.57					
J-10	0.33	269.50	310.85	404.69					
J-11	0.21	269.00	310.86	409.64					
J-12	0.00	268.47	310.86	414.87					
J-13	0.36	266.95	310.87	429.88					
J-14	0.00	267.50	310.87	424.45					
J-15	0.27	268.00	310.86	419.50					
J-16	0.63	267.70	310.87	422.49					
J-17	0.00	267.70	310.87	422.49					
J-18	0.00	268.47	310.86	414.87					
J-19	0.00	267.90	310.86	420.44					
J-20	18.06	270.00	310.84	399.68					
J-22	0.00	263.88	310.88	460.03					
J-23	0.48	265.42	310.89	444.98					
J-24	0.00	262.14	310.91	477.33					
J-25	0.00	264.20	310.88	456.88					
J-26	0.00	263.95	310.89	459.42					
J-27	1.02	268.47	310.86	414.86					
J-28	0.00	268.47	310.86	414.86					


MIN	257.40	399.68
MAX	270.00	524.18

P	eak Hour						
			Pipe Ta	ble			
ID	From Node	To Node	Length	Diameter	Roughness	Flow	Velocity
	FIOIII NOde	TO NODE	(m)	(<i>mm</i>)	(C)	(L/s)	(m/s)
P-1	R-1	PMP-1	32.47	300	120	23.67	0.33
P-2	PMP-1	J-1	43.48	300	120	23.67	0.33
P-3	J-1	J-2	71.56	300	120	23.67	0.33
P-4	J-2	J-3	43.33	200	110	5.71	0.18
P-5	J-3	J-4	74.34	200	110	5.71	0.18
P-6	J-26	J-5	52.99	300	120	15.03	0.21
P-7	J-5	J-6	48.01	300	120	4.04	0.06
P-8	J-6	J-7	64.68	300	120	3.47	0.05
P-9	J-7	J-8	85.51	300	120	11.09	0.16
P-10	J-8	J-9	70.02	300	120	10.67	0.15
P-11	J-9	J-10	79.49	300	120	10.25	0.14
P-12	J-10	J-11	71.85	300	120	-8.14	0.12
P-13	J-11	J-12	56.46	300	120	-8.35	0.12
P-14	J-5	J-13	53.46	300	120	10.63	0.15
P-15	J-13	J-14	42.21	300	120	10.27	0.15
P-16	J-14	J-15	61.09	300	120	9.64	0.14
P-17	J-15	J-12	36.66	300	120	9.37	0.13
P-18	J-14	J-16	44.53	200	110	0.63	0.02
P-19	J-16	J-17	62.06	50	100	0.01	0.00
P-20	J-17	J-16	13.67	200	110	0.01	0.00
P-21	J-12	J-18	15.60	300	120	1.01	0.01
P-22	J-12	J-19	65.21	150	100	0.01	0.00
P-23	J-10	J-20	39.25	300	120	18.06	0.26
P-25	J-23	J-26	56.14	200	110	-2.93	0.09
P-26	J-25	J-23	55.20	200	110	-2.45	0.08
P-27	J-4	J-22	34.42	300	120	5.71	0.08
P-29	J-2	J-24	33.88	300	120	17.96	0.25
P-30	J-22	J-25	36.66	300	120	5.71	0.08
P-31	J-25	J-7	68.79	300	120	8.16	0.12
P-32	J-19	J-18	82.00	50	100	0.01	0.00
P-33	J-24	J-26	65.59	300	120	17.96	0.25
P-34	J-18	J-27	52.03	200	110	1.02	0.03
P-35	J-27	J-28	16.54	200	110	0.01	0.00
P-36	J-28	J-27	74.31	50	100	0.01	0.00

		Fire	Flow Table		
ID	Fire Flow Demand	Total Demand	Total Available Flow	Available Fire Flow	Fire Flow Met?
U	(L/s)	(L/s)	(L/s)	(L/s)	FILE FIOW MEL:
J-1	117.00	117.00	353.75	353.75	TRUE
J-2	117.00	117.00	330.81	330.81	TRUE
J-3	117.00	117.00	319.63	319.63	TRUE
J-4	117.00	117.00	309.86	309.86	TRUE
J-5	117.00	117.24	306.72	306.48	TRUE
J-6	117.00	117.38	306.29	305.91	TRUE
J-7	117.00	117.36	304.79	304.43	TRUE
J-8	117.00	117.28	297.46	297.18	TRUE
J-9	117.00	117.28	292.45	292.17	TRUE
J-10	117.00	117.22	286.96	286.74	TRUE
J-11	117.00	117.14	290.98	290.84	TRUE
J-12	117.00	117.00	293.90	293.90	TRUE
J-13	117.00	117.24	302.22	301.98	TRUE
J-14	117.00	117.00	299.28	299.28	TRUE
J-15	117.00	117.18	296.06	295.88	TRUE
J-16	117.00	117.42	234.25	233.83	TRUE
J-17	117.00	117.00	219.33	219.33	TRUE
J-18	117.00	117.00	291.15	291.15	TRUE
J-19	117.00	117.00	118.15	118.15	TRUE
J-20	250.00	256.50	284.13	277.63	TRUE
J-22	117.00	117.00	308.82	308.82	TRUE
J-23	117.00	117.32	298.69	298.37	TRUE
J-24	117.00	117.00	323.31	323.31	TRUE
J-25	117.00	117.00	307.61	307.61	TRUE
J-26	117.00	117.00	312.35	312.35	TRUE
J-27	125.00	125.68	218.29	217.61	TRUE
J-28	125.00	125.00	202.67	202.67	TRUE

MIN	118.15
MAX	353.75

Maximum Day - Phase 3 (Ultimate)

SCS Consulting Group Ltd 30 Centurian Drive, Suite 100 Markham, ON, L3R 8B8 Phone 905 475 1900 Fax 905 475 8335